Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment

Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment

Michael B Burns, Joshua Lynch, Timothy K Starr, Dan Knights, Ran Blekhman

Background The human gut microbiome is associated with the development of colon cancer, and recent studies have found changes in the composition of the microbial communities in cancer patients compared to healthy controls. However, host-bacteria interactions are mainly expected to occur in the cancer microenvironment, whereas current studies primarily use stool samples to survey the microbiome. Here, we highlight the major shifts in the colorectal tumor microbiome relative to that of matched normal colon tissue from the same individual, allowing us to survey the microbial communities at the tumor microenvironment, and provides intrinsic control for environmental and host genetic effects on the microbiome. Results We characterized the microbiome in 44 primary tumor and 44 patient-matched normal colon tissues. We find that tumors harbor distinct microbial communities compared to nearby healthy tissue. Our results show increased microbial diversity at the tumor microenvironment, with changes in the abundances of commensal and pathogenic bacterial taxa, including Fusobacterium and Providencia. While Fusobacteria has previously been implicated in CRC, Providencia is a novel tumor- associated agent, and has several features that make it a potential cancer driver, including a strong immunogenic LPS and an ability to damage colorectal tissue. Additionally, we identified a significant enrichment of virulence-associated genes in the colorectal cancer microenvironment. Conclusions This work identifies bacterial taxa significantly correlated with colorectal cancer, including a novel finding of an elevated abundance of Providencia in the tumor microenvironment. We also describe several metabolic pathways and enzymes differentially present in the tumor associated microbiome, and show that the bacterial genes in the tumor microenvironment are enriched for virulence associated genes from the aggregate microbial community. This virulence enrichment indicates that the microbiome likely plays an active role in colorectal cancer development and/or progression. These reuslts provide a starting point for future prognostic and therapeutic research with the potential to improve patient outcomes.

Bayesian mixture analysis for metagenomic community profiling.

Bayesian mixture analysis for metagenomic community profiling.

Sofia Morfopoulou, Vincent Plagnol

Deep sequencing of clinical samples is now an established tool for the detection of infectious pathogens, with direct medical applications. The large amount of data generated provides an opportunity to detect species even at very low levels, provided that computational tools can effectively interpret potentially complex metagenomic mixtures. Data interpretation is complicated by the fact that short sequencing reads can match multiple organisms and by the lack of completeness of existing databases, in particular for viral pathogens. This interpretation problem can be formulated statistically as a mixture model, where the species of origin of each read is missing, but the complete knowledge of all species present in the mixture helps with the individual reads assignment. Several analytical tools have been proposed to approximately solve this computational problem. Here, we show that the use of parallel Monte Carlo Markov chains (MCMC) for the exploration of the species space enables the identification of the set of species most likely to contribute to the mixture. The added accuracy comes at a cost of increased computation time. Our approach is useful for solving complex mixtures involving several related species. We designed our method specifically for the analysis of deep transcriptome sequencing datasets and with a particular focus on viral pathogen detection, but the principles are applicable more generally to all types of metagenomics mixtures. The code is available on github ( and the process is currently being implemented in a user friendly R package (metaMix, to be submitted to CRAN).

Reagent contamination can critically impact sequence-based microbiome analyses

Reagent contamination can critically impact sequence-based microbiome analyses

Susannah Salter, Michael J Cox, Elena M Turek, Szymon T Calus, William O Cookson, Miriam F Moffatt, Paul Turner, Julian Parkhill, Nick Loman, Alan W Walker

The study of microbial communities has been revolutionised in recent years by the widespread adoption of culture independent analytical techniques such as 16S rRNA gene sequencing and metagenomics. One potential confounder of these sequence-based approaches is the presence of contamination in DNA extraction kits and other laboratory reagents. In this study we demonstrate that contaminating DNA is ubiquitous in commonly used DNA extraction kits, varies greatly in composition between different kits and kit batches, and that this contamination critically impacts results obtained from samples containing a low microbial biomass. Contamination impacts both PCR-based 16S rRNA gene surveys and shotgun metagenomics. These results suggest that caution should be advised when applying sequence-based techniques to the study of microbiota present in low biomass environments. We provide an extensive list of potential contaminating genera, and guidelines on how to mitigate the effects of contamination. Concurrent sequencing of negative control samples is strongly advised.

Phylogenetics and the human microbiome

Phylogenetics and the human microbiome
Frederick A Matsen IV
Comments: to appear in Systematic Biology
Subjects: Populations and Evolution (q-bio.PE); Genomics (q-bio.GN)

The human microbiome is the ensemble of genes in the microbes that live inside and on the surface of humans. Because microbial sequencing information is now much easier to come by than phenotypic information, there has been an explosion of sequencing and genetic analysis of microbiome samples. Much of the analytical work for these sequences involves phylogenetics, at least indirectly, but methodology has developed in a somewhat different direction than for other applications of phylogenetics. In this paper I review the field and its methods from the perspective of a phylogeneticist, as well as describing current challenges for phylogenetics coming from this type of work.

PhyloPythiaS+: A self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes

PhyloPythiaS+: A self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes

I. Gregor, J. Dröge, M. Schirmer, C. Quince, A. C. McHardy
Subjects: Quantitative Methods (q-bio.QM)

Metagenomics is an approach for characterizing environmental microbial communities in situ, it allows their functional and taxonomic characterization and to recover sequences from uncultured taxa. For communities of up to medium diversity, e.g. excluding environments such as soil, this is often achieved by a combination of sequence assembly and binning, where sequences are grouped into ‘bins’ representing taxa of the underlying microbial community from which they originate. Assignment to low-ranking taxonomic bins is an important challenge for binning methods as is scalability to Gb-sized datasets generated with deep sequencing techniques. One of the best available methods for the recovery of species bins from an individual metagenome sample is the expert-trained PhyloPythiaS package, where a human expert decides on the taxa to incorporate in a composition-based taxonomic metagenome classifier and identifies the ‘training’ sequences using marker genes directly from the sample. Due to the manual effort involved, this approach does not scale to multiple metagenome samples and requires substantial expertise, which researchers who are new to the area may not have. With these challenges in mind, we have developed PhyloPythiaS+, a successor to our previously described method PhyloPythia(S). The newly developed + component performs the work previously done by the human expert. PhyloPythiaS+ also includes a new k-mer counting algorithm, which accelerated k-mer counting 100-fold and reduced the overall execution time of the software by a factor of three. Our software allows to analyze Gb-sized metagenomes with inexpensive hardware, and to recover species or genera-level bins with low error rates in a fully automated fashion.

A novel method for the estimation of diversity in viral populations from next generation sequencing data

A novel method for the estimation of diversity in viral populations from next generation sequencing data
Jean P. Zukurov, Sieberth N. Brito, Luiz M. R. Janini, Fernando Antoneli
Comments: 17 pages, 6 figures, site: this http URL
Subjects: Quantitative Methods (q-bio.QM); Genomics (q-bio.GN)

In this paper we describe the structure and use of a computational tool for the analysis of viral genetic diversity on data generated by high- throughput sequencing. The main motivation for this work is to better understand the genetic diversity of viruses with high rates of nucleotide substitution, as HIV-1 and Influenza. This work focuses on two main fronts: the first is a novel alignment strategy that allows the recovery of the highest possible number of short-reads; the second is the estimation of the populational genetic diversity through a Bayesian approach based on Dirichlet distributions inspired by word count modeling. The software is available as an integrated platform capable of performing all operations described here, it is written in C# (Microsoft) and runs on Windows platforms. The executable, the documentation and the auxiliary files are freely available and may be obtained from:

Taxator-tk: Fast and Precise Taxonomic Assignment of Metagenomes by Approximating Evolutionary Neighborhoods

Taxator-tk: Fast and Precise Taxonomic Assignment of Metagenomes by Approximating Evolutionary Neighborhoods

J. Dröge, I. Gregor, A. C. McHardy
(Submitted on 3 Apr 2014)

Metagenomics characterizes microbial communities by random shotgun sequencing of DNA isolated directly from an environment of interest. An essential step in computational metagenome analysis is taxonomic sequence assignment, which allows us to identify the sequenced community members and to reconstruct taxonomic bins with sequence data for the individual taxa. We describe an algorithm and the accompanying software, taxator-tk, which performs taxonomic sequence assignments by fast approximate determination of evolutionary neighbors from sequence similarities. Taxator-tk was precise in its taxonomic assignment across all ranks and taxa for a range of evolutionary distances and for short sequences. In addition to the taxonomic binning of metagenomes, it is well suited for profiling microbial communities from metagenome samples becauseit identifies bacterial, archaeal and eukaryotic community members without being affected by varying primer binding strengths, as in marker gene amplification, or copy number variations of marker genes across different taxa. Taxator-tk has an efficient, parallelized implementation that allows the assignment of 6 Gb of sequence data per day on a standard multiprocessor system with ten CPU cores and microbial RefSeq as the genomic reference data.