Butter: High-precision genomic alignment of small RNA-seq data

Butter: High-precision genomic alignment of small RNA-seq data
Michael J Axtell

Eukaryotes produce large numbers of small non-coding RNAs that act as specificity determinants for various gene-regulatory complexes. These include microRNAs (miRNAs), endogenous short interfering RNAs (siRNAs), and Piwi-associated RNAs (piRNAs). These RNAs can be discovered, annotated, and quantified using small RNA-seq, a variant RNA-seq method based on highly parallel sequencing. Alignment to a reference genome is a critical step in analysis of small RNA-seq data. Because of their small size (20-30 nts depending on the organism and sub-type) and tendency to originate from multi-gene families or repetitive regions, reads that align equally well to more than one genomic location are very common. Typical methods to deal with multi-mapped small RNA-seq reads sacrifice either precision or sensitivity. The tool ‘butter’ balances precision and sensitivity by placing multi-mapped reads using an iterative approach, where the decision between possible locations is dictated by the local densities of more confidently aligned reads. Butter displays superior performance relative to other small RNA-seq aligners. Treatment of multi-mapped small RNA-seq reads has substantial impacts on downstream analyses, including quantification of MIRNA paralogs, and discovery of endogenous siRNA loci. Butter is freely available under a GNU general public license.

Facilitated diffusion buffers noise in gene expression

Facilitated diffusion buffers noise in gene expression

Armin Schoech, Nicolae Radu Zabet
(Submitted on 22 Jul 2014)

Transcription factors perform facilitated diffusion (3D diffusion in the cytosol and 1D diffusion on the DNA) when binding to their target sites to regulate gene expression. Here, we investigated the influence of this binding mechanism on the noise in gene expression. Our results showed that, for biologically relevant parameters, the binding process can be represented by a two-state Markov model and that the accelerated target finding due to facilitated diffusion leads to a reduction in both the mRNA and the protein noise.

Clonal interference and Muller’s ratchet in spatial habitats

Clonal interference and Muller’s ratchet in spatial habitats
Jakub Otwinowski, Joachim Krug
(Submitted on 18 Feb 2013 (v1), last revised 23 Jul 2014 (this version, v3))

Competition between independently arising beneficial mutations is enhanced in spatial populations due to the linear rather than exponential growth of clones. Recent theoretical studies have pointed out that the resulting fitness dynamics is analogous to a surface growth process, where new layers nucleate and spread stochastically, leading to the build up of scale-invariant roughness. This scenario differs qualitatively from the standard view of adaptation in that the speed of adaptation becomes independent of population size while the fitness variance does not. Here we exploit recent progress in the understanding of surface growth processes to obtain precise predictions for the universal, non-Gaussian shape of the fitness distribution for one-dimensional habitats, which are verified by simulations. When the mutations are deleterious rather than beneficial the problem becomes a spatial version of Muller’s ratchet. In contrast to the case of well-mixed populations, the rate of fitness decline remains finite even in the limit of an infinite habitat, provided the ratio Ud/s2 between the deleterious mutation rate and the square of the (negative) selection coefficient is sufficiently large. Using again an analogy to surface growth models we show that the transition between the stationary and the moving state of the ratchet is governed by directed percolation.

Statistical and conceptual challenges in the comparative analysis of principal components

Statistical and conceptual challenges in the comparative analysis of principal components

Josef C Uyeda, Daniel S. Caetano, Matthew W Pennell

Quantitative geneticists long ago recognized the value of studying evolution in a multivariate framework (Pearson, 1903). Due to linkage, pleiotropy, coordinated selection and mutational covariance, the evolutionary response in any phenotypic trait can only be properly understood in the context of other traits (Lande, 1979; Lynch and Walsh, 1998). This is of course also well?appreciated by comparative biologists. However, unlike in quantitative genetics, most of the statistical and conceptual tools for analyzing phylogenetic comparative data (recently reviewed in Pennell and Harmon, 2013) are designed for analyzing a single trait (but see, for example Revell and Harmon, 2008; Revell and Harrison, 2008; Hohenlohe and Arnold, 2008; Revell and Collar, 2009; Schmitz and Motani, 2011; Adams, 2014b). Indeed, even classical approaches for testing for correlated evolution between two traits (e.g., Felsenstein, 1985; Grafen, 1989; Harvey and Pagel, 1991) are not actually multivariate as each trait is assumed to have evolved under a process that is independent of the state of the other (Hansen and Orzack, 2005; Hansen and Bartoszek, 2012). As a result of these limitations, researchers with multivariate datasets are often faced with a choice: analyze each trait as if they were independent or else decompose the dataset into statistically independent set of traits, such that each set can be analyzed with the univariate methods.

Concerning RNA-Guided Gene Drives for the Alteration of Wild Populations

Concerning RNA-Guided Gene Drives for the Alteration of Wild Populations
Kevin M Esvelt, Andrea L Smidler, Flaminia Catteruccia, George M Church

Gene drives may be capable of addressing ecological problems by altering entire populations of wild organisms, but their use has remained largely theoretical due to technical constraints. Here we consider the potential for RNA-guided gene drives based on the CRISPR nuclease Cas9 to serve as a general method for spreading altered traits through wild populations over many generations. We detail likely capabilities, discuss limitations, and provide novel precautionary strategies to control the spread of gene drives and reverse genomic changes. The ability to edit populations of sexual species would offer substantial benefits to humanity and the environment. For example, RNA-guided gene drives could potentially prevent the spread of disease, support agriculture by reversing pesticide and herbicide resistance in insects and weeds, and control damaging invasive species. However, the possibility of unwanted ecological effects and near-certainty of spread across political borders demand careful assessment of each potential application. We call for thoughtful, inclusive, and well-informed public discussions to explore the responsible use of this currently theoretical technology.

Assessing allele specific expression across multiple tissues from RNA-seq read data

Assessing allele specific expression across multiple tissues from RNA-seq read data
Matti Pirinen, Tuuli Lappalainen, Noah A Zaitlen, GTEx Consortium, Emmanouil T Dermitzakis, Peter Donnelly, Mark I McCarthy, Manuel A Rivas

Motivation: RNA sequencing enables allele specific expression (ASE) studies that complement standard genotype expression studies for common variants and, importantly, also allow measuring the regulatory impact of rare variants. The Genotype-Tissue Expression project (GTEx) is collecting RNA-seq data on multiple tissues of a same set of individuals and novel methods are required for the analysis of these data. Results: We present a statistical method to compare different patterns of ASE across tissues and to classify genetic variants according to their impact on the tissue-wide expression profile. We focus on strong ASE effects that we are expecting to see for protein-truncating variants, but our method can also be adjusted for other types of ASE effects. We illustrate the method with a real data example on a tissue-wide expression profile of a variant causal for lipoid proteinosis, and with a simulation study to assess our method more generally. Availability: MAMBA software: http://birch.well.ox.ac.uk/~rivas/mamba/ R source code and data examples: http://www.iki.fi/mpirinen/ Contact: matti.pirinen@helsinki.fi rivas@well.ox.ac.uk

Fixation properties of subdivided populations with balancing selection

Fixation properties of subdivided populations with balancing selection

Pierangelo Lombardo, Andrea Gambassi, Luca Dall’Asta
Comments: 17 pages, 10 figures
Subjects: Populations and Evolution (q-bio.PE); Statistical Mechanics (cond-mat.stat-mech); Biological Physics (physics.bio-ph)

In subdivided populations, migration acts together with selection and genetic drift and determines their evolution. Building up on a recently proposed method, which hinges on the emergence of a time scale separation between local and global dynamics, we study the fixation properties of subdivided populations in the presence of balancing selection. The approximation implied by the method is accurate when the effective selection strength is small and the number of subpopulations is large. In particular, it predicts a phase transition between species coexistence and biodiversity loss in the infinite-size limit and, in finite populations, a nonmonotonic dependence of the mean fixation time on the migration rate. In order to investigate the fixation properties of the subdivided population for stronger selection, we introduce an effective coarser description of the dynamics in terms of a voter model with intermediate states, which highlights the basic mechanisms driving the evolutionary process.