The impact of deleterious passenger mutations on cancer progression.

The impact of deleterious passenger mutations on cancer progression. (arXiv:1208.6068v1 [q-bio.PE])
by Christopher D McFarland, Gregory V Kryukov, Shamil Sunyaev, Leonid Mirny

Cancer progression is driven by a small number of genetic alterations accumulating in a neoplasm. These few driver alterations reside in a cancer genome alongside tens of thousands of other mutations that are widely believed to have no role in cancer and termed passengers. Many passengers, however, fall within protein coding genes and other functional elements and can possibly have deleterious effects on cancer cells. Here we investigate a potential of mildly deleterious passengers to accumulate and alter the course of neoplastic progression. Our approach combines evolutionary simulations of cancer progression with the analysis of cancer sequencing data. In our simulations, individual cells stochastically divide, acquire advantageous driver and deleterious passenger mutations, or die. Surprisingly, despite selection against them, passengers accumulate and largely evade selection during progression. Although individually weak, the collective burden of passengers alters the course of progression leading to several phenomena observed in oncology that cannot be explained by a traditional driver-centric view. We tested predictions of the model using cancer genomic data. We find that many passenger mutations are likely to be damaging and that, in agreement with the model, they have largely evaded purifying selection. Finally, we used our model to explore cancer treatments that exploit the load of passengers by either 1) increasing the mutation rate; or 2) exacerbating their deleterious effects. While both approaches lead to cancer regression, the later leads to less frequent relapse. Our results suggest a new framework for understanding cancer progression as a balance of driver and passenger mutations.