Transposable sequence evolution is driven by gene context

Transposable sequence evolution is driven by gene context

Anna-Sophie Fiston-Lavier, Charles E. Vejnar, Hadi Quesneville
(Submitted on 2 Sep 2012)

Transposable elements (TEs) in eukaryote genomes are quantitatively the main components affecting genome size, structure and expression. The dynamics of their insertion and deletion depend on diverse factors varying in strength and nature along the genome. We address here how TE sequence evolution is affected by neighboring genes and the chromatin status (euchromatin or heterochromatin) at their insertion site. We estimated the rates of evolution of TE sequences in Arabidopsis thaliana, and found that they depend on the distance to the nearest genes: TEs located close to genes evolve faster than those that are more distant. Consequently, TE sequences in heterochromatic regions, which are gene-poor regions, are surprisingly younger and longer than those elsewhere. We present a model of TE sequence dynamics in TE-rich genomes, such as maize and wheat, and in TE-poor genomes such as fly and A. thaliana.

Leave a comment