Mutant epigenetic machinery mediates climate adaptation in Arabidopsis thaliana

Mutant epigenetic machinery mediates climate adaptation in Arabidopsis thaliana
Xia Shen, Simon Forsberg, Mats Pettersson, Zheya Sheng, Orjan Carlborg
(Submitted on 16 Oct 2013)

The genetic basis of adaptation to climate is largely unknown. We explored the genetic regulation of climate plasticity and its contribution to adaptation using publicly available data from two collections of natural Arabidopsis thaliana accessions from a wide range of habitats. Sixteen loci with plastic alleles were mapped and many of these contained candidate genes with amino acid changes. The Chromomethylase 2 (CMT2) genotype influenced adaptation to seasonal temperature variability and accessions carrying a mutant CMT2 allele disrupting the genome-wide CHH-methylation pattern displayed a more plastic response to climate. We conclude that genetic regulation of plasticity appears to be important for climate adaptation and that genetic variation in the epigenetic machinery, leading to altered genome-wide epigenetic modifications, is one of the underlying molecular mechanisms.

Leave a comment