Natural CMT2 variation is associated with genome-wide methylation changes and temperature adaptation

Natural CMT2 variation is associated with genome-wide methylation changes and temperature adaptation

Xia Shen, Jennifer De Jonge, Simon Forsberg, Mats Pettersson, Zheya Sheng, Lars Hennig, Örjan Carlborg

As Arabidopsis thaliana has colonized a wide range of habitats across the world it is an attractive model for studying the genetic mechanisms underlying environmental adaptation. Here, we used public data from two collections of A. thaliana accessions to associate genetic variability at individual loci with differences in climates at the sampling sites. We use a novel method to screen the genome for plastic alleles that tolerate a broader climate range than the major allele. This approach reduces confounding with population structure and increases power compared to standard genome-wide association methods. Sixteen novel loci were found, including an association between Chromomethylase 2 (CMT2) and variability in seasonal temperatures where the plastic allele had reduced genome-wide CHH methylation. Cmt2 mutants were more tolerant to heat-stress, suggesting genetic regulation of epigenetic modifications as a likely mechanism underlying natural adaptation to variable temperatures, potentially through differential allelic plasticity to temperature- stress.

Leave a comment