Transcript length mediates developmental timing of gene expression across Drosophila

Transcript length mediates developmental timing of gene expression across Drosophila
Carlo G. Artieri, Hunter B. Fraser
(Submitted on 18 Jan 2013)

The time required to transcribe genes with long primary transcripts may limit their ability to be expressed in cells with short mitotic cycles, a phenomenon termed intron delay. As such short cycles are a hallmark of the earliest stages of insect development, we used Drosophila developmental timecourse expression data to test whether intron delay affects gene expression genome-wide, and to determine its consequences for the evolution of gene structure. We find that long zygotically expressed, but not maternally deposited, genes show substantial delay in expression relative to their shorter counterparts and that this delay persists over a substantial portion of the ~24 hours of embryogenesis. Patterns of RNA-seq coverage from the 5′ and 3′ ends of transcripts show that this delay is consistent with their inability to terminate transcription, but not with transcriptional initiation-based regulatory control. Highly expressed zygotic genes are subject to purifying selection to maintain compact transcribed regions, allowing conservation of embryonic expression patterns across the Drosophila phylogeny. We propose that intron delay is an underappreciated physical mechanism affecting both patterns of expression as well as gene structure of many genes across Drosophila.

Advertisements

1 thought on “Transcript length mediates developmental timing of gene expression across Drosophila

  1. Pingback: Our Paper: Transcript length mediates developmental timing of gene expression across Drosophila. | Haldane's Sieve

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s