SlopMap: a software application tool for quick and flexible identification of similar sequences using exact k-mer matching


SlopMap: a software application tool for quick and flexible identification of similar sequences using exact k-mer matching

Ilya Y. Zhbannikov, Samuel S. Hunter, Matthew L. Settles, James A. Foster
(Submitted on 31 Jul 2013)

With the advent of Next-Generation (NG) sequencing, it has become possible to sequence an entire genome quickly and inexpensively. However, in some experiments one only needs to extract and assembly a portion of the sequence reads, for example when performing transcriptome studies, sequencing mitochondrial genomes, or characterizing exomes. With the raw DNA-library of a complete genome it would appear to be a trivial problem to identify reads of interest. But it is not always easy to incorporate well-known tools such as BLAST, BLAT, Bowtie, and SOAP directly into a bioinformatics pipelines before the assembly stage, either due to in- compatibility with the assembler’s file inputs, or because it is desirable to incorporate information that must be extracted separately. For example, in order to incorporate flowgrams from a Roche 454 sequencer into the Newbler assembler it is necessary to first extract them from the original SFF files. We present SlopMap, a bioinformatics software utility which allows rapid identification similar to provided target sequences from either Roche 454 or Illumnia DNA library. With a simple and intuitive command- line interface along with file output formats compatible with assembly programs, SlopMap can be directly embedded in biological data processing pipeline without any additional programming work. In addition, SlopMap preserves flowgram information needed for Roche 454 assembler.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s