Inferring HIV escape rates from multi-locus genotype data

Inferring HIV escape rates from multi-locus genotype data
Taylor A. Kessinger, Alan S. Perelson, Richard A. Neher
(Submitted on 6 Aug 2013)

Cytotoxic T-lymphocytes (CTLs) recognize viral protein fragments displayed by major histocompatibility complex (MHC) molecules on the surface of virally infected cells and generate an anti-viral response that can kill the infected cells. Virus variants whose protein fragments are not efficiently presented on infected cells or whose fragments are presented but not recognized by CTLs therefore have a competitive advantage and spread rapidly through the population. We present a method that allows a more robust estimation of these escape rates from serially sampled sequence data. The proposed method accounts for competition between multiple escapes by explicitly modeling the accumulation of escape mutations and the stochastic effects of rare multiple mutants. Applying our method to serially sampled HIV sequence data, we estimate rates of HIV escape that are substantially larger than those previously reported. The method can be extended to complex escapes that require compensatory mutations. We expect our method to be applicable in other contexts such as cancer evolution where time series data is also available.

2 thoughts on “Inferring HIV escape rates from multi-locus genotype data

  1. Pingback: Inferring HIV escape rates | neherlab

  2. Pingback: Our paper: Inferring HIV escape rates from multi-locus genotype data | Haldane's Sieve

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s