Fast Inference of Admixture Coefficients Using Sparse Non-negative Matrix Factorization Algorithms

Fast Inference of Admixture Coefficients Using Sparse Non-negative Matrix Factorization Algorithms
Eric Frichot, François Mathieu, Théo Trouillon, Guillaume Bouchard, Olivier François
(Submitted on 24 Sep 2013)

Inference of individual admixture coefficients, which is important for population genetic and association studies, is commonly performed using compute-intensive likelihood algorithms. With the availability of large population genomic data sets, fast versions of likelihood algorithms have attracted considerable attention. Reducing the computational burden of estimation algorithms remains, however, a major challenge. Here, we present a fast and efficient method for estimating individual admixture coefficients based on sparse non-negative matrix factorization algorithms. We implemented our method in the computer program sNMF, and applied it to human and plant genomic data sets. The performances of sNMF were then compared to the likelihood algorithm implemented in the computer program ADMIXTURE. Without loss of accuracy, sNMF computed estimates of admixture coefficients within run-times approximately 10 to 30 times faster than those of ADMIXTURE.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s