The Fossilized Birth-Death Process: A Coherent Model of Fossil Calibration for Divergence Time Estimation

The Fossilized Birth-Death Process: A Coherent Model of Fossil Calibration for Divergence Time Estimation
Tracy A. Heath, John P. Huelsenbeck, Tanja Stadler
(Submitted on 10 Oct 2013)

Time-calibrated species phylogenies are critical for addressing a wide range of questions in evolutionary biology, such as those that elucidate historical biogeography or uncover patterns of coevolution and diversification. Because molecular sequence data are not informative on absolute time, external data, most commonly fossil age estimates, are required to calibrate estimates of species divergence dates. For Bayesian divergence-time methods, the common practice for calibration using fossil information involves placing arbitrarily chosen parametric distributions on internal nodes, often disregarding most of the information in the fossil record. We introduce the ‘fossilized birth-death’ (FBD) process, a model for calibrating divergence-time estimates in a Bayesian framework, explicitly acknowledging that extant species and fossils are part of the same macroevolutionary process. Under this model, absolute node age estimates are calibrated by a single diversification model and arbitrary calibration densities are not necessary. Moreover, the FBD model allows for inclusion of all available fossils. We performed analyses of simulated data and show that node-age estimation under the FBD model results in robust and accurate estimates of species divergence times with realistic measures of statistical uncertainty, overcoming major limitations of standard divergence time estimation methods. We then used this model to estimate the speciation times for a dataset composed of all living bears, indicating that the genus Ursus diversified in the late Miocene to mid Pliocene.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s