On the optimal trimming of high-throughput mRNA sequence data

On the optimal trimming of high-throughput mRNA sequence data
Matthew D MacManes

The widespread and rapid adoption of high-throughput sequencing technologies has changed the face of modern studies of evolutionary genetics. Indeed, newer sequencing technologies, like Illumina sequencing, have afforded researchers the opportunity to gain a deep understanding of genome level processes that underlie evolutionary change. In particular, researchers interested in functional biology and adaptation have used these technologies to sequence mRNA transcriptomes of specific tissues, which in turn are often compared to other tissues, or other individuals with different phenotypes. While these techniques are extremely powerful, careful attention to data quality is required. In particular, because high-throughput sequencing is more error-prone than traditional Sanger sequencing, quality trimming of sequence reads should be an important step in all data processing pipelines. While several software packages for quality trimming exist, no general guidelines for the specifics of trimming have been developed. Here, using empirically derived sequence data, I provide general recommendations regarding the optimal strength of trimming, specifically in mRNA-Seq studies. Although very aggressive quality trimming is common, this study suggests that a more gentle trimming, specifically of those nucleotides whose Phred score < 2 or < 5, is optimal for most studies across a wide variety of metrics.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s