DISEASES: Text mining and data integration of disease–gene associations

DISEASES: Text mining and data integration of disease–gene associations

Sune Pletscher-Frankild, Albert Pallejà, Kalliopi Tsafou, Janos X Binder, Lars Juhl Jensen
doi: http://dx.doi.org/10.1101/008425

Text mining is a flexible technology that can be applied to numerous different tasks in biology and medicine. We present a system for extracting disease–gene associations from biomedical abstracts. The system consists of a highly efficient dictionary-based tagger for named entity recognition of human genes and diseases, which we combine with a scoring scheme that takes into account co-occurrences both within and between sentences. We show that this approach is able to extract half of all manually curated associations with a false positive rate of only 0.16%. Nonetheless, text mining should not stand alone, but be combined with other types of evidence. For this reason, we have developed the DISEASES resource, which integrates the results from text mining with manually curated disease–gene associations, cancer mutation data, and genome-wide association studies from existing databases. The DISEASES resource is accessible through a user-friendly web interface at http://diseases.jensenlab.org/, where the text-mining software and all associations are also freely available for download.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s