The developmental transcriptome of contrasting Arctic charr (Salvelinus alpinus) morphs

The developmental transcriptome of contrasting Arctic charr (Salvelinus alpinus) morphs
Jóhannes Gudbrandsson, Ehsan P Ahi, Kalina H Kapralova, Sigrídur R Franzdottir, Bjarni K Kristjánsson, Sophie S Steinhaeuser, Ísak M Jóhannesson, Valerie H Maier, Sigurdur S Snorrason, Zophonías O Jónsson, Arnar Pálsson
doi: http://dx.doi.org/10.1101/011361

Species showing repeated evolution of similar traits can help illuminate the molecular and developmental basis of diverging traits and specific adaptations. Following the last glacial period, dwarfism and specialized bottom feeding morphology evolved rapidly in several landlocked Arctic charr (Salvelinus alpinus) populations in Iceland. In order to study the genetic divergence between small benthic morphs and larger morphs with limnetic morphotype, we conducted an RNA-seq transcriptome analysis of developing charr. We sequenced mRNA from whole embryos at four stages in early development of two stocks with very different morphologies, the small benthic (SB) charr from Lake Thingvallavatn and Holar aquaculture (AC) charr. The data reveal significant differences in expression of several biological pathways during charr development. There is also a difference between SB- and AC-charr in mitochondrial genes involved in energy metabolism and blood coagulation genes. We confirmed expression difference of five genes in whole embryos with qPCR, including lysozyme and natterin which was previously identified as a fish-toxin of a lectin family that may be a putative immunopeptide. We verified differential expression of 7 genes in developing heads, and the expression associated consistently with benthic v.s. limnetic charr (studied in 4 morphs total). Comparison of Single nucleotide polymorphism (SNP) frequencies reveals extensive genetic differentiation between the SB- and AC-charr (60 fixed SNPs and around 1300 differing more than 50% in frequency). In SB-charr the high frequency derived SNPs are in genes related to translation and oxidative processes. Curiously, several derived SNPs reside in the 12s and 16s mitochondrial ribosomal RNA genes, including a base highly conserved among fishes. The data implicate multiple genes and molecular pathways in divergence of small benthic charr and/or the response of aquaculture charr to domestication. Functional, genetic and population genetic studies on more freshwater and anadromous populations are needed to confirm the specific loci and mutations relating to specific ecological or domestication traits in Arctic charr.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s