The seed-bank coalescent

The seed-bank coalescent

Jochen Blath, Adrián González Casanova, Noemi Kurt, Maite Wilke-Berenguer
(Submitted on 18 Nov 2014)

We identify a new natural coalescent structure, the seed-bank coalescent, which describes the gene genealogy of populations under the influence of a strong seed-bank effect, where `dormant forms’ of individuals (such as seeds or spores) may jump a significant number of generations before joining the `active’ population. Mathematically, our seed-bank coalescent appears as scaling limit in a Wright-Fisher model with geometric seed-bank age structure if the average time of seed dormancy scales with the order of the total population size N. This extends earlier results of Kaj, Krone and Lascaux (2001) who show that the genealogy of a Wright-Fisher model in the presence of a `weak’ seed-bank effect is given by a suitably time-changed Kingman coalescent. The qualitatively new feature of the seed-bank coalescent is that ancestral lineages are independently blocked at a certain rate from taking part in coalescence events, thus strongly altering the predictions of classical coalescent models. In particular, the seed-bank coalescent `does not come down from infinity’, and the time to the most recent common ancestor of a sample of size n grows like loglogn, which is the order also observed for the Bolthausen-Sznitman coalescent. This is in line with the empirical observation that seed-banks drastically increase genetic variability in a population and indicates how they may serve as a buffer against other evolutionary forces such as genetic drift and selection.

Advertisement

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s