Testing for genetic associations in arbitrarily structured populations

Testing for genetic associations in arbitrarily structured populations
Minsun Song, Wei Hao, John D. Storey
doi: http://dx.doi.org/10.1101/012682

We present a new statistical test of association between a trait (either quantitative or binary) and genetic markers, which we theoretically and practically prove to be robust to arbitrarily complex population structure. The statistical test involves a set of parameters that can be directly estimated from large-scale genotyping data, such as that measured in genome-wide associations studies (GWAS). We also derive a new set of methodologies, called a genotype-conditional association test (GCAT), shown to provide accurate association tests in populations with complex structures, manifested in both the genetic and environmental contributions to the trait. We demonstrate the proposed method on a large simulation study and on the Northern Finland Birth Cohort study. In the Finland study, we identify several new significant loci that other methods do not detect. Our proposed framework provides a substantially different approach to the problem from existing methods. We provide some discussion on its similarities and differences with the linear mixed model and principal component approaches.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s