The pig X and Y chromosomes: structure, sequence and evolution

The pig X and Y chromosomes: structure, sequence and evolution

Benjamin M Skinner, Carole A Sargent, Carol Churcher, Toby Hunt, Javier Herrero, Jane Loveland, Matt Dunn, Sandra Louzada, Beiyuan Fu, William Chow, James Gilbert, Siobhan Austin-Guest, Kathryn Beal, Denise Carvalho-Silva, William Cheng, Daria Gordon, Darren Grafham, Matt Hardy, Jo Harley, Heidi Hauser, Philip Howden, Kerstin Howe, Kim Lachani, Peter JI Ellis, Daniel Kelly, Giselle Kerry, James Kerwin, Bee Ling Ng, Glen Threadgold, Thomas Wileman, Jonathan MD Wood, Fengtang Yang, Jen Harrow, Nabeel A Affara, Chris Tyler-Smith
doi: http://dx.doi.org/10.1101/012914

We have generated an improved assembly and gene annotation of the pig X chromosome, and a first draft assembly of the pig Y chromosome, by sequencing BAC and fosmid clones, and incorporating information from optical mapping and fibre-FISH. The X chromosome carries 1,014 annotated genes, 689 of which are protein-coding. Gene order closely matches that found in Primates (including humans) and Carnivores (including cats and dogs), which is inferred to be ancestral. Nevertheless, several protein-coding genes present on the human X chromosome were absent from the pig (e.g. the cancer/testis antigen family) or inactive (e.g. AWAT1), and 38 pig-specific X-chromosomal genes were annotated, 22 of which were olfactory receptors. The pig Y chromosome assembly focussed on two clusters of male-specific low-copy number genes, separated by an ampliconic region including the HSFY gene family, which together make up most of the short arm. Both clusters contain palindromes with high sequence identity, presumably maintained by gene conversion. The long arm of the chromosome is almost entirely repetitive, containing previously characterised sequences. Many of the ancestral X-related genes previously reported in at least one mammalian Y chromosome are represented either as active genes or partial sequences. This sequencing project has allowed us to identify genes – both single copy and amplified – on the pig Y, to compare the pig X and Y chromosomes for homologous sequences, and thereby to reveal mechanisms underlying pig X and Y chromosome evolution.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s