Geographic range size is predicted by plant mating system

Geographic range size is predicted by plant mating system
Dena Grossenbacher, Ryan Briscoe Runquist, Emma Goldberg, Yaniv Brandvain
doi: http://dx.doi.org/10.1101/013417

Species ranges vary enormously, and even closest relatives may differ in range size by several orders of magnitude. With data from hundreds of species spanning 20 genera and generic sections, we show that plant species that autonomously reproduce via self-pollination consistently have larger geographic ranges than their close relatives that generally require two parents for reproduction. Further analyses strongly implicate autonomous fertilization in causing this relationship, as it is not driven by traits such as polyploidy or annual life history whose evolution is sometimes correlated with the transition to autonomous self-fertilization. Furthermore, we find that selfers occur at higher maximum latitudes and that disparity in range size between selfers and outcrossers increases with time since their separation. Together, these results show that autonomous reproduction – a critical biological trait that eliminates mate limitation and thus potentially increases the probability of establishment – increases range size.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s