Reprogramming LCLs to iPSCs Results in Recovery of Donor-Specific Gene Expression Signature

Reprogramming LCLs to iPSCs Results in Recovery of Donor-Specific Gene Expression Signature

Samantha M Thomas, Courtney Kagan, Bryan J Pavlovic, Jonathan Burnett, Kristen Patterson, Jonathan K Pritchard, Yoav Gilad
doi: http://dx.doi.org/10.1101/013631

Renewable in vitro cell cultures, such as lymphoblastoid cell lines (LCLs), have facilitated studies that contributed to our understanding of genetic influence on human traits. However, the degree to which cell lines faithfully maintain differences in donor-specific phenotypes is still debated. We have previously reported that standard cell line maintenance practice results in a loss of donor-specific gene expression signatures in LCLs. An alternative to the LCL model is the induced pluripotent stem cell (iPSC) system, which carries the potential to model tissue-specific physiology through the use of differentiation protocols. Still, existing LCL banks represent an important source of starting material for iPSC generation, and it is possible that the disruptions in gene regulation associated with long-term LCL maintenance could persist through the reprogramming process. To address this concern, we studied the effect of reprogramming mature LCLs to iPSCs on the ensuing gene expression patterns within and between six unrelated donor individuals. We show that the reprogramming process results in a recovery of donor-specific gene regulatory signatures. Since environmental contributions are unlikely to be a source of individual variation in our system of highly passaged cultured cell lines, our observations suggest that the effect of genotype on gene regulation is more pronounced in the iPSCs than in the LCL precursors. Our findings indicate that iPSCs can be a powerful model system for studies of phenotypic variation across individuals in general, and the genetic association with variation in gene regulation in particular. We further conclude that LCLs are an appropriate starting material for iPSC generation.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s