Genetic Variation, Not Cell Type of Origin, Underlies Regulatory Differences in iPSCs

Genetic Variation, Not Cell Type of Origin, Underlies Regulatory Differences in iPSCs
Courtney L Kagan, Nicholas E Banovich, Bryan J Pavlovic, Kristen Patterson, Irene Gallego Romero, Jonathan K Pritchard, Yoav Gilad
doi: http://dx.doi.org/10.1101/013888

The advent of induced pluripotent stem cells (iPSCs) revolutionized Human Genetics by allowing us to generate pluripotent cells from easily accessible somatic tissues. This technology can have immense implications for regenerative medicine, but iPSCs also represent a paradigm shift in the study of complex human phenotypes, including gene regulation and disease. Yet, an unresolved caveat of the iPSC model system is the extent to which reprogrammed iPSCs retain residual phenotypes from their precursor somatic cells. To directly address this issue, we used an effective study design to compare regulatory phenotypes between iPSCs derived from two types of commonly used somatic precursor cells. We show that the cell type of origin only minimally affects gene expression levels and DNA methylation in iPSCs. Instead, genetic variation is the main driver of regulatory differences between iPSCs of different donors.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s