Molecular evolutionary consequences of island colonisation
Jennifer James, Robert Lanfear, Adam Eyre-Walker
doi: http://dx.doi.org/10.1101/014811
Island endemics are likely to experience population bottlenecks; they also have restricted ranges. Therefore we expect island species to have small effective population sizes (Ne) and reduced genetic diversity compared to their mainland counterparts. As a consequence, island species may have inefficient selection and reduced adaptive potential. We used both polymorphisms and substitutions to address these predictions, improving on the approach of recent studies that only used substitution data. This allowed us to directly test the assumption that island species have small values of Ne. We found that island species had significantly less genetic diversity than mainland species; however, this pattern could be attributed to a subset of island species that had undergone a recent population bottleneck. When these species were excluded from the analysis, island and mainland species had similar levels of genetic diversity, despite island species occupying considerably smaller areas than their mainland counterparts. We also found no overall difference between island and mainland species in terms of effectiveness of selection or mutation rate. Our evidence suggests that island colonisation has no lasting impact on molecular evolution. This surprising result highlights gaps in our knowledge of the relationship between census and effective population size.