Improving access to endogenous DNA in ancient bones and teeth

Improving access to endogenous DNA in ancient bones and teeth

Peter de Barros Damgaard , Ashot Margaryan , Hannes Schroeder , Ludovic Orlando , Eske Willerslev , Morten E Allentoft
doi: http://dx.doi.org/10.1101/014985

Poor DNA preservation is the most limiting factor in ancient genomic research. In the vast majority of ancient bones and teeth, endogenous DNA molecules only represent a minor fraction of the whole DNA extract, rendering traditional shot-gun sequencing approaches cost-ineffective for whole-genome characterization. Based on ancient human bone samples from temperate and tropical environments, we show that an initial EDTA-based enzymatic ‘pre-digestion’ of powdered bone increases the proportion of endogenous DNA several fold. By performing the pre-digestion step between 30 min and 6 hours on five bones, we identify the optimal pre-digestion time and document an average increase of 2.7 times in the endogenous DNA fraction after 1 hour of pre-digestion. With longer pre-digestion times, the increase is asymptotic while molecular complexity decreases. We repeated the experiment with n=21 and t=15-30′, and document a significant increase in endogenous DNA content (one-sided paired t-test: p=0.009). We advocate the implementation of a short pre-digestion step as a standard procedure in ancient DNA extractions from bone material. Finally, we demonstrate on 14 ancient teeth that crushed cementum of the roots contains up to 14 times more endogenous DNA than the dentine. Our presented methodological guidelines considerably advance the ability to characterize ancient genomes.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s