LINKS: Scaffolding genome assemblies with kilobase-long nanopore reads

LINKS: Scaffolding genome assemblies with kilobase-long nanopore reads
Rene L Warren , Benjamin P Vandervalk , Steven JM Jones , Inanc Birol
doi: http://dx.doi.org/10.1101/016519

Owing to the complexity of the assembly problem, we do not yet have complete genome sequences. The difficulty in assembling reads into finished genomes is exacerbated by sequence repeats and the inability of short reads to capture sufficient genomic information to resolve those problematic regions. Established and emerging long read technologies show great promise in this regard, but their current associated higher error rates typically require com-putational base correction and/or additional bioinformatics pre-processing before they could be of value. We present LINKS, the Long Interval Nucleotide K-mer Scaffolder algorithm, a solution that makes use of the information in error-rich long reads, without the need for read alignment or base correction. We show how the conti-guity of an ABySS E. coli K-12 genome assembly could be in-creased over five-fold by the use of beta-released Oxford Nanopore Ltd. (ONT) long reads and how LINKS leverages long-range infor-mation in S. cerevisiae W303 ONT reads to yield an assembly with less than half the errors of competing applications. Re-scaffolding the colossal white spruce assembly draft (PG29, 20 Gbp) and how LINKS scales to larger genomes is also presented. We expect LINKS to have broad utility in harnessing the potential of long reads in connecting high-quality sequences of small and large genome assembly drafts.

Advertisement

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s