Pollen-specific genes accumulate more deleterious mutations than sporophytic genes under relaxed purifying selection in Arabidopsis thaliana.

Pollen-specific genes accumulate more deleterious mutations than sporophytic genes under relaxed purifying selection in Arabidopsis thaliana.

Mark Christian Harrison , Eamonn B Mallon , Dave Twell , Robert L Hammond
doi: http://dx.doi.org/10.1101/016626

The strength of purifying selection varies among loci and leads to differing frequencies of deleterious alleles within genomes. Selection is generally stronger for highly and broadly expressed genes but can be less efficient for diploid expressed, deleterious alleles if heterozygous. In plants expression level, tissue specificity and ploidy level differ between pollen specific and sporophyte specific genes. This may explain why the reported strength and direction of the relationship between selection and the specificity of a gene to either pollen or sporophytic tissues varies between studies and species. In this study, we investigate the individual effects of expression level and tissue specificity on selection efficacy within pollen genes and sporophytic genes of Arabidopsis thaliana. Due to high homozygosity levels caused by selfing, masking is expected to play a lesser role. We find that expression level and tissue specificity independently influence selection in A. thaliana. Furthermore, contrary to expectations, pollen genes are evolving faster due to relaxed purifying selection and have accumulated a higher frequency of deleterious alleles. This suggests that high homozygosity levels resulting from high selfing rates reduce the effects of pollen competition and masking in A. thaliana, so that the high tissue specificity and expression noise of pollen genes are leading to lower selection efficacy compared to sporophyte genes.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s