Recombining without hotspots: A comprehensive evolutionary portrait of recombination in two closely related species of Drosophila

Recombining without hotspots: A comprehensive evolutionary portrait of recombination in two closely related species of Drosophila

Caiti Smukowski Heil , Chris Ellison , Matthew Dubin , Mohamed Noor
doi: http://dx.doi.org/10.1101/016972

Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in Metazoans by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present what may be the most comprehensive portrait of recombination to date, combining contemporary recombination estimates from each of two sister species along with historic estimates of recombination using linkage-disequilibrium-based approaches derived from sequence data from both species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we replicate the pattern seen in human-chimpanzee that recombination rate is conserved at broad scales and more divergent at finer scales. We also find evidence of a species-wide recombination modifier, resulting in both a present and historic genome wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inter-species inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s