Selective strolls: fixation and extinction in diploids are slower for weakly selected mutations than for neutral ones

Selective strolls: fixation and extinction in diploids are slower for weakly selected mutations than for neutral ones

fabrizio mafessoni , Michael Lachmann
doi: http://dx.doi.org/10.1101/016881

In finite populations, an allele disappears or reaches fixation due to two main forces, selection and drift. Selec- tion is generally thought to accelerate the process: a selected mutation will reach fixation faster than a neutral one, and a disadvantageous one will quickly disappear from the population. We show that even in simple diploid populations, this is often not true. Dominance and recessivity unexpectedly slow down the evolutionary process for weakly selected alleles. In particular, slightly advantageous dominant and mildly deleterious recessive mu- tations reach fixation more slowly than neutral ones. This phenomenon determines genetic signatures opposite to those expected under strong selection, such as increased instead of decreased genetic diversity around the selected site. Furthermore, we characterize a new phenomenon: mildly deleterious recessive alleles, thought to represent the vast majority of newly arising mutations, survive in a population longer than neutral ones, before getting lost. Hence, natural selection is less effective than previously thought in getting rid rapidly of slightly negative mutations, contributing their observed persistence in present populations. Consequently, low frequency slightly deleterious mutations are on average older than neutral ones.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s