Efficient Privacy-Preserving String Search and an Application in Genomics

Efficient Privacy-Preserving String Search and an Application in Genomics
Kana Shimizu , Koji Nuida , Gunnar Rätsch
doi: http://dx.doi.org/10.1101/018267

Motivation: Personal genomes carry inherent privacy risks and protecting privacy poses major social and technological challenges. We consider the case where a user searches for genetic information (e.g., an allele) on a server that stores a large genomic database and aims to receive allele-associated information. The user would like to keep the query and result private and the server the database. Approach: We propose a novel approach that combines efficient string data structures such as the Burrows-Wheeler transform with cryptographic techniques based on additive homomorphic encryption. We assume that the sequence data is searchable in efficient iterative query operations over a large indexed dictionary, for instance, from large genome collections and employing the (positional) Burrows-Wheeler transform. We use a technique called oblivious transfer that is based on additive homomorphic encryption to conceal the sequence query and the genomic region of interest in positional queries. Results: We designed and implemented an efficient algorithm for searching sequences of SNPs in large genome databases. During search, the user can only identify the longest match while the server does not learn which sequence of SNPs the user queries. In an experiment based on 2,184 aligned haploid genomes from the 1,000 Genomes Project, our algorithm was able to perform typical queries within ≈2 seconds and ≈20 seconds seconds for client and server side, respectively, on a laptop computer. The presented algorithm is at least one order of magnitude faster than an exhaustive baseline algorithm.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s