Theoretical consequences of the Mutagenic Chain Reaction for manipulating natural populations

Theoretical consequences of the Mutagenic Chain Reaction for manipulating natural populations
Robert Unckless , Philipp Messer , Andrew Clark
doi: http://dx.doi.org/10.1101/018986

The use of recombinant genetic technologies for population manipulation has mostly remained an abstract idea due to the lack of a suitable means to drive novel gene constructs to high frequency in populations. Recently Gantz and Bier showed that the use of CRISPR/Cas9 technology could provide an artificial drive mechanism, the so-called Mutagenic Chain Reaction (MCR), which could lead to rapid fixation of even a deleterious introduced allele. We establish the equivalence of this system to models of meiotic drive and review the results of simple models showing that, when there is a fitness cost to the MCR allele, an internal equilibrium exists that is usually unstable. Introductions must be at a frequency above this critical point for the successful invasion of the MCR allele. These modeling results have important implications for application of MCR in natural populations.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s