Coalescent times and patterns of genetic diversity in species with facultative sex: effects of gene conversion, population structure and heterogeneity

Coalescent times and patterns of genetic diversity in species with facultative sex: effects of gene conversion, population structure and heterogeneity

Matthew Hartfield , Stephen I. Wright , Aneil F. Agrawal

Many diploid organisms undergo facultative sexual reproduction. However, little is currently known concerning the distribution of neutral genetic variation amongst facultative sexuals except in very simple cases. Understanding this distribution is important when making inferences about rates of sexual reproduction, effective population size and demographic history. Here, we extend coalescent theory in diploids with facultative sex to consider gene conversion, selfing, population subdivision, and temporal and spatial heterogeneity in rates of sex. In addition to analytical results for two-sample coalescent times, we outline a coalescent algorithm that accommodates the complexities arising from partial sex; this algorithm can be used to generate multi-sample coalescent distributions. A key result is that when sex is rare, gene conversion becomes a significant force in reducing diversity within individuals, which can remove genomic signatures of infrequent sex (the ‘Meselson Effect’) or entirely reverse the predictions. Our models offer improved methods for assessing the null model (I.e. neutrality) of patterns of molecular variation in facultative sexuals.

Advertisements

One thought on “Coalescent times and patterns of genetic diversity in species with facultative sex: effects of gene conversion, population structure and heterogeneity

  1. Pingback: Author post: Coalescent times and patterns of genetic diversity in species with facultative sex | Haldane's Sieve

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s