Improved ribosome-footprint and mRNA measurements provide insights into dynamics and regulation of yeast translation

Improved ribosome-footprint and mRNA measurements provide insights into dynamics and regulation of yeast translation

David E Weinberg, Premal Shah, Stephen W Eichhorn, Jeffrey A Hussmann, Joshua B Plotkin, David P Bartel
doi: http://dx.doi.org/10.1101/021501

Ribosome-footprint profiling provides genome-wide snapshots of translation, but technical challenges can confound its analysis. Here, we use improved methods to obtain ribosome-footprint profiles and mRNA abundances that more faithfully reflect gene expression in Saccharomyces cerevisiae. Our results support proposals that both the beginning of coding regions and codons matching rare tRNAs are more slowly translated. They also indicate that emergent polypeptides with as few as three basic residues within a 10-residue window tend to slow translation. With the improved mRNA measurements, the variation attributable to translational control in exponentially growing yeast was less than previously reported, and most of this variation could be predicted with a simple model that considered mRNA abundance, upstream open reading frames, cap-proximal structure and nucleotide composition, and lengths of the coding and 5′- untranslated regions. Collectively, our results reveal key features of translational control in yeast and provide a framework for executing and interpreting ribosome- profiling studies.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s