Heterozygous gene truncation delineates the human haploinsufficient genome

Heterozygous gene truncation delineates the human haploinsufficient genome

István Bartha, Antonio Rausell, Paul McLaren, Manuel Tardaguila, Pejman Mohammadi, Nimisha Chaturvedi, Jacques Fellay, Amalio Telenti
doi: http://dx.doi.org/10.1101/010611

Sequencing projects have identified large numbers of rare stop-gain and frameshift variants in the human genome. As most of these are observed in the heterozygous state, they test a gene?s tolerance to haploinsufficiency and dominant loss of function. We analyzed the distribution of truncating variants across 16,260 protein coding autosomal genes in 11,546 individuals. We observed 39,893 truncating variants affecting 12,062 genes, which significantly differed from an expectation of 12,916 genes under a model of neutral de novo mutation (p<1E-4). Extrapolating this to increasing numbers of sequenced individuals, we estimate that 10.8% of human genes do not tolerate heterozygous truncating variants. An additional 10 to 15% of truncated genes may be rescued by incomplete penetrance or compensatory mutations, or because the truncating variants are of limited functional impact. The study of protein truncating variants delineates the essential genome and, more generally, identifies rare heterozygous variants as an unexplored source of diversity of phenotypic traits and diseases.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s