Protein binding and methylation on looping chromatin accurately predict distal regulatory interactions

Protein binding and methylation on looping chromatin accurately predict distal regulatory interactionsSean Whalen, Rebecca M. Truty, Katherine S. Pollard

Identifying the gene targets of distal regulatory sequences is a challenging problem with the potential to illuminate the causal underpinnings of complex diseases. However, current experimental methods to map enhancer-promoter interactions genome-wide are limited by their cost and complexity. We present TargetFinder, a computational method that reconstructs a cell’s three-dimensional regulatory landscape from two-dimensional genomic features. TargetFinder achieves outstanding predictive accuracy across diverse cell lines with a false discovery rate up to fifteen times smaller than common heuristics, and reveals that distal regulatory interactions are characterized by distinct signatures of protein interactions and epigenetic marks on the DNA loop between an active enhancer and targeted promoter. Much of this signature is shared across cell types, shedding light on the role of chromatin organization in gene regulation and establishing TargetFinder as a method to accurately map long-range regulatory interactions using a small number of easily acquired datasets.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s