Tanglegrams: a reduction tool for mathematical phylogenetics

Tanglegrams: a reduction tool for mathematical phylogenetics

Frederick A Matsen IV, Sara Billey, Arnold Kas, Matjaž Konvalinka
(Submitted on 16 Jul 2015)

Many discrete mathematics problems in phylogenetics are defined in terms of the relative labeling of pairs of leaf-labeled trees. These relative labelings are naturally formalized as tanglegrams, which have previously been an object of study in coevolutionary analysis. Although there has been considerable work on planar drawings of tanglegrams, they have not been fully explored as combinatorial objects until recently. In this paper, we describe how many discrete mathematical questions on trees “factor” through a problem on tanglegrams, and how understanding that factoring can simplify analysis. Depending on the problem, it may be useful to consider a unordered version of tanglegrams, and/or their unrooted counterparts. For all of these definitions, we show how the isomorphism types of tanglegrams can be understood in terms of double cosets of the symmetric group, and we investigate their automorphisms. Understanding tanglegrams better will isolate the distinct problems on leaf-labeled pairs of trees and reveal natural symmetries of spaces associated with such problems.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s