Detection of adaptive shifts on phylogenies using shifted stochastic processes on a tree

Detection of adaptive shifts on phylogenies using shifted stochastic processes on a tree

Paul Bastide, Mahendra Mariadassou, Stéphane Robin
doi: http://dx.doi.org/10.1101/023804

Comparative and evolutive ecologists are interested in the distribution of quantitative traits among related species. The classical framework for these distributions consists of a random process running along the branches of a phylogenetic tree relating the species. We consider shifts in the process parameters, which reveal fast adaptation to changes of ecological niches. We show that models with shifts are not identifiable in general. Constraining the models to be parsimonious in the number of shifts partially alleviates the problem but several evolutionary scenarios can still provide the same joint distribution for the extant species. We provide a recursive algorithm to enumerate all the equivalent scenarios and to count the effectively different scenarios. We introduce an incomplete-data framework and develop a maximum likelihood estimation procedure based on the EM algorithm. Finally, we propose a model selection procedure, based on the cardinal of effective scenarios, to estimate the number of shifts and prove an oracle inequality.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s