A note on the distribution of admixture segment lengths and ancestry proportions under pulse and two-wave admixture models

A note on the distribution of admixture segment lengths and ancestry proportions under pulse and two-wave admixture models

Shai Carmi, James Xue, Itsik Pe’er
(Submitted on 19 Sep 2015)

Admixed populations are formed by the merging of two or more ancestral populations, and the ancestry of each locus in an admixed genome derives from either source. Consider a simple “pulse” admixture model, where populations A and B merged t generations ago without subsequent gene flow. We derive the distribution of the proportion of an admixed chromosome that has A (or B) ancestry, as a function of the chromosome length L, t, and the initial contribution of the A source, m. We demonstrate that these results can be used for inference of the admixture parameters. For more complex admixture models, we derive an expression in Laplace space for the distribution of ancestry proportions that depends on having the distribution of the lengths of segments of each ancestry. We obtain explicit results for the special case of a “two-wave” admixture model, where population A contributed additional migrants in one of the generations between the present and the initial admixture event. Specifically, we derive formulas for the distribution of A and B segment lengths and numerical results for the distribution of ancestry proportions. We show that for recent admixture, data generated under a two-wave model can hardly be distinguished from that generated under a pulse model.

Advertisement

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s