Quantification of the effect of mutations using a global probability model of natural sequence variation

Quantification of the effect of mutations using a global probability model of natural sequence variation
Thomas A. Hopf, John B. Ingraham, Frank J. Poelwijk, Michael Springer, Chris Sander, Debora S. Marks

Modern biomedicine is challenged to predict the effects of genetic variation. Systematic functional assays of point mutants of proteins have provided valuable empirical information, but vast regions of sequence space remain unexplored. Fortunately, the mutation-selection process of natural evolution has recorded rich information in the diversity of natural protein sequences. Here, building on probabilistic models for correlated amino-acid substitutions that have been successfully applied to determine the three-dimensional structures of proteins, we present a statistical approach for quantifying the contribution of residues and their interactions to protein function, using a statistical energy, the evolutionary Hamiltonian. We find that these probability models predict the experimental effects of mutations with reasonable accuracy for a number of proteins, especially where the selective pressure is similar to the evolutionary pressure on the protein, such as antibiotics.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s