Convexity in Tree Spaces

Convexity in Tree Spaces
Bo Lin, Bernd Sturmfels, Xiaoxian Tang, Ruriko Yoshida

We study the geometry of metrics and convexity structures on the space of phylogenetic trees, here realized as the tropical linear space of all ultrametrics. The CAT(0)-metric of Billera-Holmes-Vogtman arises from the theory of orthant spaces. While its geodesics can be computed by the Owen-Provan algorithm, geodesic triangles are complicated and can have arbitrarily high dimension. Tropical convexity and the tropical metric are better behaved, as they exhibit properties that are desirable for geometric statistics.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s