Methylation Analysis Reveals Fundamental Differences Between Ethnicity and Genetic Ancestry

Joshua M Galanter, Christopher R Gignoux, Sam S Oh, Dara Torgerson, Maria Pino-Yanes, Neeta Thakur, Celeste Eng, Donglei Hu, Scott Huntsmann, Harold J Farber, Pedro Avila, Emerita Brigino-Buenaventura, Michael LeNoir, Kelly Meade, Denise Serebrisky, William Rodriguez-Cintron, Raj Kumar, Jose R Rodriguez-Santana, Max Seibold, Luisa Borrell, Esteban G Burchard, Noah Zaitlen

In clinical practice and biomedical research populations are often divided categorically into distinct racial and ethnic groups. In reality, these categories comprise diverse groups with highly heterogeneous histories, cultures, traditions, religions, as well as social and environmental exposures. While the factors captured by these categories contribute to clinical practice and biomedical research, the use of race/ethnicity is widely debated. As a response to this debate, genetic ancestry has been suggested as a complement or alternative to this categorization. However, few studies have examined the effect of genetic ancestry, racial/ethnic identity, and environmental exposures on biological processes. Herein, we examine the contribution of self-identification within ethnicity, genetic ancestry, and environmental exposures on epigenetic modification of DNA methylation, a phenomenon affected by both genetic and environmental factors. We typed over 450,000 variably methylated CpG sites in primary whole blood of 573 individuals of Mexican and Puerto Rican descent who also had high-density genotype data. We found that methylation levels at a large number of CpG sites were significantly associated with ethnicity even when adjusting for genetic ancestry. In addition, we found an enrichment of ethnicity-associated sites amongst loci previously associated with environmental and social exposures. Interestingly, one of the strongest associated sites is driven by the Duffy Null blood type variant, demonstrating a new function of the locus in lymphocytes. Overall, the methylation changes associated with race/ethnicity, driven by both genes and environment, highlight the importance of measuring and accounting for both self-identified race/ethnicity and genetic ancestry in clinical and biomedical studies and the benefits of studying diverse populations.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s