Folding and unfolding phylogenetic trees and networks
Katharina T. Huber, Vincent Moulton, Mike Steel, Taoyang Wu
(Submitted on 14 Jun 2015)
Phylogenetic networks are rooted, labelled directed acyclic graphs which are commonly used to represent reticulate evolution. There is a close relationship between phylogenetic networks and multi-labelled trees (MUL-trees). Indeed, any phylogenetic network N can be ‘unfolded’ to obtain a MUL-tree U(N) and, conversely, a MUL-tree T can in certain circumstances be ‘folded’ to obtain a phylogenetic network F(T) that exhibits T. In this paper, we study properties of the operations U and F in more detail. In particular, we introduce the class of stable networks, phylogenetic networks N for which F(U(N)) is isomorphic to N, characterise such networks, and show that that they are related to the well-known class of tree-sibling networks. We also explore how the concept of displaying a tree in a network N can be related to displaying the tree in the MUL-tree U(N). To do this, we develop a phylogenetic analogue of graph fibrations. This allows us to view U(N) as the analogue of the universal cover of a digraph, and to establish a close connection between displaying trees in U(N) and reconciling phylogenetic trees with networks.