Identification of Slco1a6 as a candidate gene that broadly affects gene expression in mouse pancreatic islets

Identification of Slco1a6 as a candidate gene that broadly affects gene expression in mouse pancreatic islets

Jianan Tian, Mark Keller, Angie Oler, Mary Rabagalia, Kathryn Schueler, Donald Stapleton, Aimee Teo Broman, Wen Zhao, Christina Kendziorski, Brian S. Yandell, Bruno Hagenbuch, Karl W Broman, Alan D. Attie
doi: http://dx.doi.org/10.1101/020974

We surveyed gene expression in six tissues in an F2 intercross between mouse strains C57BL/6J (abbreviated B6) and BTBR T+ tf /J (abbreviated BTBR) made genetically obese with the Leptin(ob) mutation. We identified a number of expression quantitative trait loci (eQTL) affecting the expression of numerous genes distal to the locus, called trans-eQTL hotspots. Some of these trans-eQTL hotspots showed effects in multiple tissues, whereas some were specific to a single tissue. An unusually large number of transcripts (7% of genes) mapped in trans to a hotspot on chromosome 6, specifically in pancreatic islets. By considering the first two principal components of the expression of genes mapping to this region, we were able to convert the multivariate phenotype into a simple Mendelian trait. Fine-mapping the locus by traditional methods reduced the QTL interval to a 298 kb region containing only three genes, including Slco1a6, one member of a large family of organic anion transporters. Direct genomic sequencing of all Slco1a6 exons identified a non-synonymous coding SNP that converts a highly conserved proline residue at amino acid position 564 to serine. Molecular modeling suggests that Pro564 faces an aqueous pore within this 12-transmembrane domain-spanning protein. When transiently overexpressed in HEK293 cells, BTBR OATP1A6-mediated cellular uptake of the bile acid taurocholic acid (TCA) was enhanced compared to B6 OATP1A6. Our results suggest that genetic variation in Slco1a6 leads to altered transport of TCA (and potentially other bile acids) by pancreatic islets, resulting in broad gene regulation.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s