The power of single molecule real-time sequencing technology in the de novo assembly of a eukaryotic genome

The power of single molecule real-time sequencing technology in the de novo assembly of a eukaryotic genomeHiroaki Sakai, Naito Ken, Eri Ogiso-Tanaka, Yu Takahashi, Kohtaro Iseki, Chiaki Muto, Kazuhito Satou, Kuniko Teruya, Akino Shiroma, Makiko Shimoji, Takashi Hirano, Takeshi Itoh, Akito Kaga, Norihiko Tomooka
doi: http://dx.doi.org/10.1101/021634

Second-generation sequencers (SGS) have been game-changing, achieving cost-effective whole genome sequencing in many non-model organisms. However, a large portion of the genomes still remains unassembled. We reconstructed azuki bean (Vigna angularis) genome using single molecule real-time (SMRT) sequencing technology and achieved the best contiguity and coverage among currently assembled legume crops. The SMRT-based assembly produced 100 times longer contigs with 100 times smaller amount of gaps compared to the SGS-based assemblies. A detailed comparison between the assemblies revealed that the SMRT-based assembly enabled a more comprehensive gene annotation than the SGS-based assemblies where thousands of genes were missing or fragmented. A chromosome-scale assembly was generated based on the high-density genetic map, covering 86% of the azuki bean genome. We demonstrated that SMRT technology, though still needed to be assisted by SGS data, can achieve a near-complete assembly of a eukaryotic genome.

Leave a comment