Joint analysis of functional genomic data and genome-wide association studies of 18 human traits

Joint analysis of functional genomic data and genome-wide association studies of 18 human traits
Joseph Pickrell

Annotations of gene structures and regulatory elements can inform genome-wide association studies (GWAS). However, choosing the relevant annotations for interpreting an association study of a given trait remains challenging. We describe a statistical model that uses association statistics computed across the genome to identify classes of genomic element that are enriched or depleted for loci that influence a trait. The model naturally incorporates multiple types of annotations. We applied the model to GWAS of 18 human traits, including red blood cell traits, platelet traits, glucose levels, lipid levels, height, BMI, and Crohn’s disease. For each trait, we evaluated the relevance of 450 different genomic annotations, including protein-coding genes, enhancers, and DNase-I hypersensitive sites in over a hundred tissues and cell lines. We show that the fraction of phenotype-associated SNPs that influence protein sequence ranges from around 2% (for platelet volume) up to around 20% (for LDL cholesterol); that repressed chromatin is significantly depleted for SNPs associated with several traits; and that cell type-specific DNase-I hypersensitive sites are enriched for SNPs associated with several traits (for example, fibroblasts in Crohn’s disease and muscle tissue in bone density). Finally, by re-weighting each GWAS using information from functional genomics, we increase the number of loci with high-confidence associations by around 5%.

3 thoughts on “Joint analysis of functional genomic data and genome-wide association studies of 18 human traits

  1. Pingback: Most viewed on Haldane’s Sieve: November 2013 | Haldane's Sieve

  2. Pingback: Author post: Joint analysis of functional genomic data and genome-wide association studies of 18 human traits | Haldane's Sieve

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s