Common binding by redundant group B Sox proteins is evolutionarily conserved in Drosophila

Common binding by redundant group B Sox proteins is evolutionarily conserved in Drosophila

Sarah H Carl, Steven Russell
doi: http://dx.doi.org/10.1101/012872

Background: Group B Sox proteins are a highly conserved group of transcription factors that act extensively to coordinate nervous system development in higher metazoans while showing both co-expression and functional redundancy across a broad group of taxa. In Drosophila melanogaster, the two group B Sox proteins Dichaete and SoxNeuro show widespread common binding across the genome. While some instances of functional compensation have been observed in Drosophila, the function of common binding and the extent of its evolutionary conservation is not known. Results: We used DamID-seq to examine the genome-wide binding patterns of Dichaete and SoxNeuro in four species of Drosophila. Through a quantitative comparison of Dichaete binding, we evaluated the rate of binding site turnover across the genome as well as at specific functional sites. We also examined the presence of Sox motifs within binding intervals and the correlation between sequence conservation and binding conservation. To determine whether common binding between Dichaete and SoxNeuro is conserved, we performed a detailed analysis of the binding patterns of both factors in two species. Conclusion: We find that, while the regulatory networks driven by Dichaete and SoxNeuro are largely conserved across the drosophilids studied, binding site turnover is widespread and correlated with phylogenetic distance. Nonetheless, binding is preferentially conserved at known cis-regulatory modules and core, independently verified binding sites. We observed the strongest binding conservation at sites that are commonly bound by Dichaete and SoxNeuro, suggesting that these sites are functionally important. Our analysis provides insights into the evolution of group B Sox function, highlighting the specific conservation of shared binding sites and suggesting alternative sources of neofunctionalisation between paralogous family members.

Modeling and quantifying frequency-dependent fitness in microbial populations with cross-feeding interactions

Modeling and quantifying frequency-dependent fitness in microbial populations with cross-feeding interactions

Noah Ribeck, Richard E. Lenski
doi: http://dx.doi.org/10.1101/012807

Coexistence of multiple populations by frequency-dependent selection is common in nature, and it often arises even in well-mixed experiments with microbes. If ecology is to be incorporated into models of population genetics, then it is important to represent accurately the functional form of frequency-dependent interactions. However, measuring this functional form is problematic for traditional fitness assays, which assume a constant fitness difference between competitors over the course of an assay. Here, we present a theoretical framework for measuring the functional form of frequency-dependent fitness by accounting for changes in abundance and relative fitness during a competition assay. Using two examples of ecological coexistence that arose in a long-term evolution experiment with Escherichia coli, we illustrate accurate quantification of the functional form of frequency-dependent relative fitness. Using a Monod-type model of growth dynamics, we show that two ecotypes in a typical cross-feeding interaction—such as when one bacterial population uses a byproduct generated by another—yields relative fitness that is linear with relative frequency.

Maternal microRNAs in Drosophila eggs: selection against target sites in maternal protein-coding transcripts

Maternal microRNAs in Drosophila eggs: selection against target sites in maternal protein-coding transcripts

Antonio Marco
doi: http://dx.doi.org/10.1101/012757

In animals, before the zygotic genome is expressed, the egg already contains gene products deposited by the mother. These maternal products are crucial during the initial steps of development. In Drosophila melanogaster a large number of maternal products are found in the oocyte, some of which are indispensable. Many of these products are RNA molecules, such as gene transcripts and ribosomal RNAs. Recently, microRNAs – small RNA gene regulators – have been detected early during development and are important in these initial steps. The presence of some microRNAs in unfertilized eggs has been reported, but whether they have a functional impact in the egg or early embryo has not being explored. To characterize a maternal microRNA set, I have extracted and sequenced small RNAs from Drosophila unfertilized eggs. The unfertilized egg is rich in small RNAs, particularly in ribosomal RNAs, and contains multiple microRNA products. I further validated two of these microRNAs by qPCR and also showed that these are not present in eggs from mothers without Dicer-1 activity. Maternal microRNAs are often encoded within the intron of maternal genes, suggesting that many maternal microRNAs are the product of transcriptional hitch-hiking. Comparative genomics and population data suggest that maternally deposited transcripts tend to avoid target sites for maternally deposited microRNAs. A potential role of the maternal microRNA mir-9c in maternal-to-zygotic transition is also discussed. In conclusion, maternal microRNAs in Drosophila have a functional impact in maternal protein-coding transcripts.

Fitness costs in spatially structured environments

Fitness costs in spatially structured environments

Florence Debarre
doi: http://dx.doi.org/10.1101/012740

The clustering of individuals that results from limited dispersal is a double-edged sword: while it allows for local interactions to be mostly among related individuals, it also results in increased local competition. Here I show that, because they mitigate local competition, fitness costs such as reduced fecundity or reduced survival are less costly in spatially structured environments than in non spatial settings. I first present a simple demographic example to illustrate how spatial structure weakens selection against fitness costs. Then, I illustrate the importance of disentangling the evolution of a trait from the evolution of potential associated costs, using an example taken from a recent study investigating the effect of spatial structure on the evolution of host defence. In this example indeed, the differences between spatial and non-spatial selection gradients are entirely due to differences in the fitness costs, thereby undermining interpretations of the results made in terms of the trait only. This illustrates the need to consider fitness costs as proper traits in both theoretical and empirical studies.

Origin and cross-century dynamics of an avian hybrid zone

Origin and cross-century dynamics of an avian hybrid zone

Andrea Morales-Rozo, Elkin A. Tenorio, Matthew D. Carling, Carlos Daniel Cadena
doi: http://dx.doi.org/10.1101/012856

Background: Characterizations of the dynamics of hybrid zones in space and time can give insights about traits and processes important in population divergence and speciation. We characterized a hybrid zone between tanagers in the genus Ramphocelus (Aves, Thraupidae) located in southwestern Colombia. We tested whether this hybrid zone originated as a result of secondary contact or of primary differentiation, and described its dynamics across time using spatial analyses of molecular, morphological, and coloration data in combination with paleodistribution modeling. Results: Models of potential historical distributions based on climatic data and genetic signatures of demographic expansion suggested that the hybrid zone originated following secondary contact between populations that expanded their ranges out of isolated areas in the Quaternary. Concordant patterns of variation in phenotypic characters across the hybrid zone and its narrow extent are suggestive of a tension zone, maintained by a balance between dispersal and selection against hybrids. Estimates of phenotypic cline parameters obtained using specimens collected over nearly a century revealed that, in recent decades, the zone has moved to the east and to higher elevations, and has become narrower. Genetic variation was not clearly structured along the hybrid zone, but comparisons between historical and contemporary specimens suggested that temporal changes in its genetic makeup may also have occurred. Conclusions: Our data suggest that the hybrid zone resulted from secondary contact between populations. The observed changes in the hybrid zone may be a result of sexual selection, asymmetric gene flow, or environmental change.

Limits to adaptation along environmental gradients

Limits to adaptation along environmental gradients
Jitka Polechová, Nick Barton
doi: http://dx.doi.org/10.1101/012690

Why do species not adapt to ever-wider ranges of conditions, gradually expanding their ecological niche? Theories of niche evolution typically omit spatial context, yet all species experience spatially variable conditions. Gene flow across environments has two conflicting effects on adaptation: while it increases genetic variation, which is a prerequisite for adaptation, gene flow may swamp adaptation to local conditions. We show that genetic drift can generate a sharp margin to a species’ range, by reducing genetic variance below the level needed for adaptation to spatially variable conditions. Dimensional arguments and separation of ecological and evolutionary time scales reveal a simple threshold that predicts when adaptation at the range margin fails. Two observable parameters describe the threshold: i) the effective environmental gradient, which can be measured by the loss of fitness due to dispersal to a different environment, and ii) the efficacy of selection relative to genetic drift. The theory predicts sharp range margins even in the absence of abrupt changes in the environment. Furthermore, it implies that gradual worsening of conditions across a species’ habitat may suddenly lead to range fragmentation – as adaptation to a wide span of conditions within a single species becomes impossible.

An annotated consensus genetic map for Pinus taeda L. and extent of linkage disequilibrium in three genotype-phenotype discovery populations

An annotated consensus genetic map for Pinus taeda L. and extent of linkage disequilibrium in three genotype-phenotype discovery populations
Jared W. Westbrook, Vikram E. Chhatre, Le-Shin Wu, Srikar Chamala, Leandro Gomide Neves, Patricio Muñoz, Pedro J Martínez-García, David B. Neale, Matias Kirst, Keithanne Mockaitis, C. Dana Nelson, Gary F. Peter, John M. Davis, Craig S. Echt
doi: http://dx.doi.org/10.1101/012625

A consensus genetic map for Pinus taeda (loblolly pine) was constructed by merging three previously published maps with a map from a pseudo-backcross between P. taeda and P. elliottii (slash pine). The consensus map positioned 4981 markers via genotyping of 1251 individuals from four pedigrees. It is the densest linkage map for a conifer to date. Average marker spacing was 0.48 centiMorgans and total map length was 2372 centiMorgans. Functional predictions for 4762 markers for expressed sequence tags were improved by alignment to full-length P. taeda transcripts. Alignments to the P. taeda genome mapped 4225 scaffold sequences onto linkage groups. The consensus genetic map was used to compare the extent of genome-wide linkage disequilibrium in an association population of distantly related P. taeda individuals (ADEPT2), a multiple-family pedigree used for genomic selection studies (CCLONES), and a full-sib quantitative trait locus mapping population (BC1). Weak linkage disequilibrium was observed in CCLONES and ADEPT2. Average squared correlations, R2, between genotypes at SNPs less than one centiMorgan apart was less than 0.05 in both populations and R2 did not decay substantially with genetic distance. By contrast, strong and extended linkage disequilibrium was observed among BC1 full-sibs where average R2 decayed from 0.8 to less than 0.1 over 53 centiMorgans. The consensus map and analysis of linkage disequilibrium establish a foundation for comparative association and quantitative trait locus mapping between genotype-phenotype discovery populations.