The dynamics of sperm cooperation in a competitive environment


The dynamics of sperm cooperation in a competitive environment

H. S. Fisher, L. Giomi, H. E. Hoekstra, L. Mahadevan
(Submitted on 2 Jul 2014)

Sperm cooperation has evolved in a variety of taxa and is often considered a response to sperm competition, yet the benefit of this form of collective movement remains unclear. Here we use fine-scale imaging and a minimal mathematical model to study sperm aggregation in the rodent genus Peromyscus. We demonstrate that as the number of sperm cells in an aggregate increase, the group moves with more persistent linearity but without increasing speed; this benefit, however, is offset in larger aggregates as the geometry of the group forces sperm to swim against one another. The result is a non-monotonic relationship between aggregate size and average velocity with both a theoretically predicted and empirically observed optimum of 6-7 sperm/aggregate. To understand the role of sexual selection in driving these sperm group dynamics, we compared two sister-species with divergent mating systems and find that sperm of P.maniculatus (highly promiscuous), which have evolved under intense competition, form optimal-sized aggregates more often than sperm of P.polionotus (strictly monogamous), which lack competition. Our combined mathematical and experimental study of coordinated sperm movement reveals the importance of geometry, motion and group size on sperm velocity and suggests how these physical variables interact with evolutionary selective pressures to regulate cooperation in competitive environments.

A field test for frequency-dependent selection on mimetic colour patterns in Heliconius butterflies

A field test for frequency-dependent selection on mimetic colour patterns in Heliconius butterflies

Patricio Alejandro Salazar Carrión, Martin Stevens, Robert T. Jones, Imogen Ogilvie, Chris Jiggins

Müllerian mimicry, the similarity among unpalatable species, is thought to evolve by frequency-dependent selection. Accordingly, phenotypes that become established in an area are positively selected because predators have learnt to avoid these forms, while introduced phenotypes are eliminated because predators have not yet learnt to associate these other forms with unprofitability. We tested this prediction in two areas where different colour morphs of the mimetic species Heliconius erato and H. melpomene have become established, as well as in the hybrid zone between these morphs. In each area we tested for selection on three colour patterns: the two parental and the most common hybrid. We recorded bird predation on butterfly models with paper wings, matching the appearance of each morph to bird vision, and plasticine bodies. We did not detect differences in survival between colour morphs, but all morphs were more highly attacked in the hybrid zone. This finding is consistent with recent evidence from controlled experiments with captive birds, which suggest that the effectiveness of warning signals decreases when a large signal diversity is available to predators. This is likely to occur in the hybrid zone where over twenty hybrid phenotypes coexist.