Dynamic Transcript Profiling of Candida Albicans Infection in Zebrafish: a Pathogen-Host Interaction Study

Dynamic Transcript Profiling of Candida Albicans Infection in Zebrafish: a Pathogen-Host Interaction Study
Yan Yu Chen, Chun-Cheih Chao, Fu-Chen Liu, Po-Chen Hsu, Hsueh-Fen Chen, Shih-Chi Peng, Yung-Jen Chuang, Chung-Yu Lan, Wen-Ping Hsieh, David Shan Hill Wong
(Submitted on 14 Jun 2013)

Candida albicans is responsible for a number of life-threatening infections and causes considerable morbidity and mortality in immunocompromised patients. Previous studies of C. albicans pathogenesis have suggested several steps must occur before virulent infection, including early adhesion, invasion, and late tissue damage. However, the mechanism that triggers C. albicans transformation from yeast to hyphae form during infection has yet to be fully elucidated. This study used a systems biology approach to investigate C. albicans infection in zebrafish. The surviving fish were sampled at different post-infection time points to obtain time-lapsed, genome-wide transcriptomic data from both organisms, which were accompanied with in sync histological analyses. Principal component analysis (PCA) was used to analyze the dynamic gene expression profiles of significant variations in both C. albicans and zebrafish. The results categorized C. albicans infection into three progressing phases: adhesion, invasion, and damage. Such findings were highly supported by the corresponding histological analysis. Furthermore, the dynamic interspecies transcript profiling revealed that C. albicans activated its filamentous formation during invasion and the iron scavenging functions during the damage phases, whereas zebrafish ceased its iron homeostasis function following massive hemorrhage during the later stages of infection. This was followed by massive hemorrhaging toward the end stage of infection. Most of the immune related genes were expressed as the infection progressed from invasion to the damage phase. Such global, inter-species evidence of virulence-immune and iron competition dynamics during C. albicans infection could be crucial in understanding control fungal pathogenesis.

Spin models inferred from patient data faithfully describe HIV fitness landscapes and enable rational vaccine design

Spin models inferred from patient data faithfully describe HIV fitness landscapes and enable rational vaccine design
Karthik Shekhar, Claire F. Ruberman, Andrew L. Ferguson, John P. Barton, Mehran Kardar, Arup K. Chakraborty
(Submitted on 9 Jun 2013)

Mutational escape from vaccine induced immune responses has thwarted the development of a successful vaccine against AIDS, whose causative agent is HIV, a highly mutable virus. Knowing the virus’ fitness as a function of its proteomic sequence can enable rational design of potent vaccines, as this information can focus vaccine induced immune responses to target mutational vulnerabilities of the virus. Spin models have been proposed as a means to infer intrinsic fitness landscapes of HIV proteins from patient-derived viral protein sequences. These sequences are the product of non-equilibrium viral evolution driven by patient-specific immune responses, and are subject to phylogenetic constraints. How can such sequence data allow inference of intrinsic fitness landscapes? We combined computer simulations and variational theory \'{a} la Feynman to show that, in most circumstances, spin models inferred from patient-derived viral sequences reflect the correct rank order of the fitness of mutant viral strains. Our findings are relevant for diverse viruses.

Our paper: The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine

This guest post is by Detlef Weigel (@WeigelWorld) and Hernán A. Burbano on their arXived paper [with coauthors] Yoshida et al. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. arXived here and in press at eLife [to appear here].

This paper is the result of a great collaboration between a lab that specializes in ancient DNA (that of Johannes Krause from the University of Tübingen), an expert in pathogen systematics (the group of Marco Thines from the Senckenberg Museum and Goethe University in Frankfurt), two pathogen genomics labs (those of Sophien Kamoun from the Sainsbury Laboratory in Norwich and Frank Martin from the USDA in California), and our evolutionary genomics group at the Max Planck Institute in Tübingen (Hernán A. Burbano and Detlef Weigel).

 

Phytophthora infestans made history when it destroyed large parts of the European potato crop, beginning in 1845. Potato has its origin in the Andes, in the Southeast of modern Peru and Northwest of Bolivia, while the center of diversity of P. infestans is several thousand kilometers further north, in Mexico’s Toluca Valley. There, other Phytophthora species live on a broad range of host plants. At some point in its history, evolutionary events associated with repeat-driven genome expansion [1,2] endowed P. infestans with the genetic arsenal required to infect potato. The pathogen was introduced to Europe in 1845 via infected potato tuber from the United States, where potato blight had made its first appearance in 1843. In the ensuing European blight epidemic, Ireland was hit especially hard, because the virtual absence of independent farmers and a restrictive customs policy conspired with the disease caused by P. infestans, potato blight, to have disproportionately devastating effects. The Great Famine that struck Ireland was a decisive event in both European and American history. One million Irish died of starvation, and at least another million left the country – most of them to the USA.

 

This part of P. infestans history has been clear, but the relationship of the strain(s) that caused the nineteenth century epidemic to modern strains has been controversial. Before a range of genetically quite distinct P. infestans strains made their debut throughout the world some 40 years ago, the global population outside Mexico was dominated by a single strain, called US-1. Because of its prevalence, US-1 was long thought to have been the cause of the fatal outbreak in the nineteenth century. From the analysis of a single SNP in the mitochondrial genome, it was, however, concluded in 2001 that the nineteenth century strains were more closely related to the modern strains that prevail today [3].

 

In our new paper, we resolve this paradoxical view: While the historical pathogen strain, which we call HERB-1, indeed differs at this one position from US-1, which has a derived allele, HERB-1 is far more closely related to US-1 than to other modern strains. Molecular clock analyses show that both strains probably separated from each other only a few years before the major European outbreak. HERB-1 seems to have dominated the global population without many genetic changes, and only in the twentieth century, after new potato varieties were introduced, was HERB-1 replaced by US-1 as the most successful P. infestans strain. We do not know for sure why HERB-1 was replaced, but we noted that the modern strains tend to be polyploid, while HERB-1 was diploid. We speculate that the increased genetic diversity in polyploid lineages were important for the success of US-1 (and other modern strains).

 

Our conclusions are based on Illumina sequencing of 11 herbarium samples of infected potato and tomato leaves collected in Ireland, the UK, Continental Europe and North America and preserved in the herbaria of the Botanical State Collection Munich and the Kew Gardens in London. Both herbaria placed a great deal of confidence in our abilities and were very generous in providing the dried plants. The degree of DNA preservation in the herbarium samples was impressive, much higher than in other examples of ancient DNA, and the majority of recovered DNA was from the host plant, with some samples having in addition over 20% pathogen DNA. In contrast to recent studies of historic human pathogens, no target DNA enrichment was required. We compared the historic samples with modern strains from Europe, Africa and North and South America as well as two closely related Phytophthora species. Due to the 150-year long period over which the individual samples had been collected, we were able to estimate with great confidence when the various P. infestans strains had emerged during evolutionary time. Here, too, we found connections with historic events: the first contact between Europeans and Americans in Mexico falls exactly into the time window in which the genetic diversity of P. infestans experienced a remarkable increase. Presumably, the social upheaval following the arrival of the Europeans somehow led to a spread of the pathogen at the beginning of the sixteenth century, which in turn accelerated its evolution.

 

The historical HERB-1 type is so far not known from modern collections, but we now have many diagnostic markers with which we can type the hundreds of modern isolates to determine whether perhaps there is somewhere a reservoir of HERB-1. In addition, our work highlights that herbaria constitute a rich, so far untapped source for investigating real-time evolution.

 

Detlef Weigel, weigel@weigelworld.org

Hernán A. Burbano, hernan.burbano@tuebingen.mpg.de

 

Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany

 

 

1.         Haas BJ, Kamoun S, Zody MC, Jiang RH, Handsaker RE, et al. (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461: 393-398.

2.         Raffaele S, Farrer RA, Cano LM, Studholme DJ, MacLean D, et al. (2010) Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science 330: 1540-1543.

3.         Ristaino JB, Groves CT, Parra GR (2001) PCR amplification of the Irish potato famine pathogen from historic specimens. Nature 411: 695-697.

 

 

Our paper: Integrating influenza antigenic dynamics with molecular evolution

This guest post is by Trevor Bedford (@trvrb) on his paper (along with coauthors): Bedford et al. Integrating influenza antigenic dynamics with molecular evolution arXived here.

The influenza virus shows a remarkable capacity to evolve to escape human immunity. Many other viruses, like measles, do not have this capacity. After infection with measles, a person gains life-long immunity to the virus, and hence measles has become constrained to be a childhood infection. Continual antigenic evolution in influenza necessitates frequent vaccine updates to provide sufficient protection to circulating strains.

Antigenic differences between strains are commonly quantified using the hemagglutination inhibition (HI) assay, which measures the ability of antibodies created against one strain to interfere with virus from another strain. The resulting HI data is represented as a sparse matrix of comparisons between viruses from strains A, B, C… and sera from strains X, Y, Z… Taken by itself, this matrix is difficult to work with. Experienced virologists can pick up the loss of reactivity between groups of viruses in the noisy HI data, but these patterns are not fully quantified.

In our new paper, available on the arXiv, we extend techniques of multidimensional scaling (MDS) pioneered by Derek Smith and colleagues for the analysis of influenza antigenic data. Here, we attempted to bring the MDS antigenic model into a fully Bayesian framework and refer to the revised technique as Bayesian MDS (BMDS). In this model, viruses and sera are represented as 2D coordinates on an antigenic map in which their pairwise distances yield expectations for the HI titers, with antigenically similar viruses lying close to one another and antigenically distant viruses lying far apart.

By placing antigenic cartography in a Bayesian context, we are able to integrate other data sources, most notably sequence data. In this case, genetic sequences provide an evolutionary tree relating virus strains and we assume that antigenic location evolves along this tree in a 2D diffusion process. This process imposes a prior on antigenic locations in which evolutionary similar viruses have a prior expectation of lying close to one another on the map. In the paper, we use this BMDS / diffusion model to investigate patterns of antigenic evolution in 4 circulating lineages of influenza and show that antigenic drift determines to a large degree incidence patterns across time and across lineages.

The paper is also up on GitHub, which I’ll keep updating as it goes through the review process. The BMDS model is implemented in the software package BEAST and is available in the latest source code. I hope to provide tutorials on running the BMDS model in the not-to-distant future.

Slowing evolution is more effective than enhancing drug development for managing resistance

Slowing evolution is more effective than enhancing drug development for managing resistance
Nathan S. McClure, Troy Day
(Submitted on 29 Apr 2013)

Drug resistance is a serious public health problem that threatens to thwart our ability to treat many infectious diseases. Repeatedly, the introduction of new drugs has been followed by the evolution of resistance. In principle there are two ways to address this problem: (i) enhancing drug development, and (ii) slowing drug resistance. We present data and a modeling approach based on queueing theory that explores how interventions aimed at these two facets affect the ability of the entire drug supply system to provide service. Analytical and simulation-based results show that, all else equal, slowing the evolution of drug resistance is more effective at ensuring an adequate supply of effective drugs than is enhancing the rate at which new drugs are developed. This lends support to the idea that evolution management is not only a significant component of the solution to the problem of drug resistance, but may in fact be the most important component.

Integrating influenza antigenic dynamics with molecular evolution

Integrating influenza antigenic dynamics with molecular evolution
Trevor Bedford, Marc A. Suchard, Philippe Lemey, Gytis Dudas, Victoria Gregory, Alan J. Hay, John W. McCauley, Colin A. Russell, Derek J. Smith, Andrew Rambaut
(Submitted on 12 Apr 2013)

Influenza viruses undergo continual antigenic evolution allowing mutant viruses to evade immunity acquired by the host population to previous virus strains. Antigenic phenotype is often assessed through pairwise measurement of cross-reactivity between influenza strains using the hemagglutination inhibition (HI) assay. Here, we extend previous approaches to antigenic cartography, which seeks to place strains on an antigenic map, such that distances on this map best recapitulate titers observed across multiple HI assays. In our model, we simultaneously characterize antigenic and genetic evolution by including an evolutionary model in which antigenic location diffuses over a shared virus phylogeny. Using HI data for four lineages of influenza, encompassing influenza A subtypes H3N2 and H1N1, and influenza B lineages Victoria and Yamagata, we determine average rates of antigenic drift for each lineage, as well as year-to-year variability in the rate of drift. Through comparison with epidemiological data, we demonstrate a year-to-year correlation between drift and incidence and present evidence that antigenic drift mediates interference between influenza lineages. We investigate the selective underpinnings for differing antigenic dynamics across lineages and show that A/H3N2 benefits from both a higher influx of new antigenic mutations and also from more efficient conversion of antigenic variation into fixed differences. This work does much to elucidate the antigenic dynamics of influenza lineages, but also allows for substantial future advances in investigating the dynamics of influenza and other antigenically-variable pathogens by providing a model that intimately combines molecular and antigenic evolution.

The Maintenance of Sex: Ronald Fisher meets the Red Queen

The Maintenance of Sex: Ronald Fisher meets the Red Queen
David Green, Chris Mason
(Submitted on 10 Apr 2013)

Sex in higher diploids carries a two-fold cost of males that should reduce its fitness relative to cloning and result in extinction. Instead, sex is widespread and it is clonal species that face early obsolescence. One possible reason is that sex is an adaptation to resist parasites. We use computer simulations of finite populations to model a Red Queen in which a parasitic haploid mounts a negative frequency-dependent attack on a diploid host. Both host and parasite populations generate novel alleles by mutation and have access to large allele spaces. Sex outcompetes cloning by two overlapping mechanisms. First, sexual diploids adopt advantageous homozygous mutations more rapidly than clonal diploids under conditions of lag load. This rate advantage can offset the lesser fecundity of sex. Second, a relative advantage to sex emerges under host mutation rates that are fast enough to retain fitness in a rapidly mutating parasite environment and increase host polymorphism and polyclonality. Polyclonal populations disproportionately experience interference with selection at high mutation rates, both between and within loci, slowing clonal population adaptation to a changing parasite environment and reducing clonal population fitness relative to sex. This effect increases markedly with the number of loci under independent selection. Rates of parasite mutation exist that not only allow sex to survive despite the two-fold cost of males but which enable sexual and clonal populations to have equal fitness and co-exist. Since all higher organisms carry parasitic loads, the model is of general applicability.

Low-virulence Strains of Toxoplasma gondii Result in Permanent Loss of Innate Fear of Cats in Mice, Even after Parasite Clearance

Low-virulence Strains of Toxoplasma gondii Result in Permanent Loss of Innate Fear of Cats in Mice, Even after Parasite Clearance
Wendy Marie Ingram, Leeanne M Goodrich, Ellen A Robey, Michael B Eisen
(Submitted on 1 Apr 2013)

Toxoplasma gondii chronic infection in rodent secondary hosts has been reported to lead to a loss of innate, hard-wired fear toward cats, its primary host. However the generality of this response across T. gondii strains and the underlying mechanism for this pathogenmediated behavioral change remain unknown. To begin exploring these questions, we evaluated the effects of infection with isolates from the three major North American clonal lineages of T. gondii. Using an hour-long open field activity assay optimized for this purpose, we measured mouse aversion toward predator and non-predator urines. We show that loss of innate aversion of cat urine is a general trait caused by infection with all three major clonal lineages of parasite. Surprisingly, we found that infection with an attenuated Type I parasite results in sustained loss of fear at times post infection when neither parasite nor ongoing brain inflammation were detectable. This suggests that T. gondii-mediated interruption of mouse innate aversion of cats may occur during early acute infection in a permanent manner, not requiring persistence of parasite cysts or continuing brain inflammation.