Epidemic clones, oceanic gene pools and epigenotypes in the free living marine pathogen Vibrio parahaemolyticus
Yujun Cui, Xianwei Yang, Xavier Didelot, Chenyi Guo, Dongfang Li, Yanfeng Yan, Yiquan Zhang, Yanting Yuan, Huanming Yang, Jian Wang, Jun Wang, Yajun Song, Dongsheng Zhou, Daniel Falush, Ruifu Yang
Subjects: Populations and Evolution (q-bio.PE)
In outbreeding organisms, genetic variation is reassorted each generation, leading to geographic gene pools. By contrast bacterial clones can spread and adapt independently leading to a wide variety of possible genetic structures. Here we investigated global patterns of variation in 157 whole genome sequences of Vibrio parahaemolyticus, a free living and seafood associated marine bacterium. Pandemic clones, responsible for recent outbreaks of gastroenteritis in humans have spread globally. However, there are oceanic gene pools, one located in the oceans surrounding Asia and another in the Mexican Gulf. Frequent recombination means that most isolates have acquired the genetic profile of their current location. Within oceanic gene pools, there is nevertheless the opportunity for substructure, for example due to niche partitioning by different clones. We investigated this structure by calculating the effective population size in two different ways. Under standard population genetic models, the two estimates should give similar answers but we found a 30 fold difference. This discrepancy provides evidence for an ‘epigenotype’ model in which distinct ecotypes are maintained by selection on an otherwise homogeneous genetic background. To investigate the genetic factors involved, we used 54 unrelated isolates to conduct a genome wide scan for epistatically interacting loci. We found a single example of strong epistasis between distant genome regions. One of the genes involved in this interaction has previously been implicated in biofilm formation, while the other is a hypothetical protein. Further work will allow a detailed understanding of how selection acts to structure the pattern of variation within natural bacterial populations.
denote it by g(xB,tB|xA,tA). The joint probability distribution of fitness values of all nodes of the tree is given by a product of branch propagators. We then calculate the expected fitness of each node and use it to rank the sampled sequences. The top ranked sequence is our prediction for the sequence of the progenitor of the future population.
Being able to predict evolution could have immediate applications. The best example is the seasonal influenza vaccine, that needs to be updated frequently to keep up with the evolving virus. Vaccine strains are chosen among sampled virus strains, and the more closely this strain matches the future influenza virus population, the better the vaccine is going to be. Hence by predicting a likely progenitor of the future, our method could help to improve influenza vaccines. One of our predictions is shown in the figure, with the top ranked sequence marked by a black arrow. Influenza is not the only possible application. Since the algorithm only requires a reconstructed tree as input, it can be applied to other rapidly evolving pathogens or cancer cell populations. In addition, to being useful, the ability to predict also implies that the model captures an essential aspect of evolutionary dynamics: influenza evolution is to a substantial degree — enough to enable prediction — dependent on the accumulation of small effect mutations.