Halite endoliths in the Atacama Desert represent one of the most extreme microbial ecosystems on Earth. Here we sequenced and characterized a shotgun metagenome from halite nodules collected in Salar Grande, Chile. The community is dominated by archaea and functional analysis attributed most of the autotrophic CO2 fixation to a unique cyanobacterium. The assembled 1.1 Mbp genome of a novel nanohaloarchaeon, Candidatus Nanopetramus SG9, revealed a photoheterotrophic life style and a low median isoelectric point (pI) for all predicted proteins, suggesting a “salt-in” strategy for osmotic balance. Predicted proteins of the algae identified in the community also had pI distributions similar to “salt-in” strategists. The Nanopetramus genome contained a unique CRISPR/Cas system with a spacer that matched a partial viral genome from the metagenome. A combination of reference-independent methods identified over 30 complete or near complete viral or proviral genomes with diverse genome structure, genome size, gene content, and hosts. Putative hosts included Halobacteriaceae, Nanohaloarchaea, and Cyanobacteria. Despite the dependence of the halite community on deliquescence for liquid water availability, this study exposed an ecosystem spanning three phylogenetic domains, containing a large diversity of viruses, and a predominant salt-in strategy to balance the high osmotic pressure of the environment.
Adaptation to heavy-metal contaminated environments proceeds via selection on pre-existing genetic variation
Conservation patterns’ analysis of 18,364 candidate human-specific regulatory sequences revealed two distinct pathways of the human regulatory DNA divergence
Elevation of linkage disequilibrium above neutral expectations in ancestral and derived populations of Drosophila melanogaster
Para-allopatry in hybridizing fire-bellied toads (Bombina bombina and B. variegata): inference from transcriptome-wide coalescence analyses
Age-related and heteroplasmy-related variation in human mtDNA copy number
Patching holes in the Chlamydomonas genome
Decomposing the site frequency spectrum: the impact of tree topology on neutrality tests
Decomposing the site frequency spectrum: the impact of tree topology on neutrality tests
Alice Ledda, Guillaume Achaz, Thomas Wiehe, Luca Ferretti
We investigate the dependence of the site frequency spectrum (SFS) on the topological structure of coalescent trees. We show that basic population genetic statistics – for instance estimators of theta or neutrality tests such as Tajima’s D – can be decomposed into components of waiting times between coalescent events and of tree topology. Our results clarify the relative impact of the two components on these statistics. We provide a rigorous interpretation of positive or negative values of neutrality tests in terms of the underlying tree shape. In particular, we show that values of Tajima’s D and Fay and Wu’s H depend in a direct way on a measure of tree balance which is mostly determined by the root balance of the tree. We also compute the maximum and minimum values for neutrality tests as a function of sample size.
Focusing on the standard coalescent model of neutral evolution, we discuss how waiting times between coalescent events are related to derived allele frequencies and thereby to the frequency spectrum. Finally, we show how tree balance affects the frequency spectrum. In particular, we derive the complete SFS conditioned on the root imbalance. We show that the conditional spectrum is peaked at frequencies corresponding to the root imbalance and strongly biased towards rare alleles.
On the Balance of Unrooted Trees
On the Balance of Unrooted Trees
Mareike Fischer, Volkmar Liebscher
We solve a class of optimization problems for (phylogenetic) X-trees or their shapes. These problems have recently appeared in different contexts, e.g. in the context of the impact of tree shapes on the size of TBR neighborhoods, but so far these problems have not been characterized and solved in a systematic way. In this work we generalize the concept and also present several applications. Moreover, our results give rise to a nice notion of balance for trees. Unsurprisingly, so-called caterpillars are the most unbalanced tree shapes, but it turns out that balanced tree shapes cannot be described so easily as they need not even be unique.
Estimation of the True Evolutionary Distance under the Fragile Breakage Model
Estimation of the True Evolutionary Distance under the Fragile Breakage Model
Nikita Alexeev, Max A. Alekseyev
The ability to estimate the evolutionary distance between extant genomes plays a crucial role in many phylogenomic studies. Often such estimation is based on the parsimony assumption, implying that the distance between two genomes can be estimated as the minimal number of genome rearrangements required to transform one genome into the other. However, in reality the parsimony assumption may not always hold, emphasizing the need for estimation that does not rely on the minimal number of genome rearrangements. While there exists a method for such estimation, it however assumes that genomes can be broken by rearrangements equally likely at any position in the course of evolution. This assumption, known as the random breakage model, has recently been refuted in favor of the more rigorous fragile breakage model postulating that only certain “fragile” genomic regions are prone to rearrangements. We propose a new method for estimating the evolutionary distance between two genomes with high accuracy under the fragile breakage model.