An age-of-allele test of neutrality for transposable element insertions not at equilibrium
Justin P. Blumenstiel, Miaomiao He, Casey M. Bergman
(Submitted on 16 Sep 2012)
How natural selection acts to limit the proliferation of transposable elements (TEs) in genomes has been of interest to evolutionary biologists for many years. To describe TE dynamics in populations, many previous studies have relied on the assumption of equilibrium between transposition and selection. However, since TE invasions are known to happen in bursts through time, this assumption may not be reasonable. Here we derive a test of neutrality for TE insertions that does not rely on the assumption of transpositional equilibrium. We consider the case of TE insertions that have been ascertained from a single haploid reference genome sequence and have had their allele frequency estimated in a population sample. By conditioning on age information provided within the sequence of a TE insertion in the form of the number of substitutions that have occurred within the fragment since insertion into a reference genome, we derive the probability distribution for the TE allele frequency in a population sample under neutrality. Taking models of population fluctuation into account, we then test the fit of predictions of our model to allele frequency data from 190 retrotransposon insertion loci in North American and African populations of Drosophila melanogaster. Using this non-equilibrium model, we are able to explain about 80% of the variance in TE insertion allele frequencies. Controlling for nonequilibrium dynamics of transposition and host demography, we demonstrate how one may detect negative selection acting against most TEs as well as evidence for a small subset of TEs being driven to high frequency by positive selection. Our work establishes a new framework for the analysis of the evolutionary forces governing large insertion mutations like TEs or gene duplications.