Threshold trait architecture of Hsp90-buffered variation

Threshold trait architecture of Hsp90-buffered variation

Charles C Carey , Kristen F Gorman , Becky Howsmon , Charles Kooperberg , Aaron K Aragaki , Suzannah Rutherford
doi: http://dx.doi.org/10.1101/016980

Common genetic variants buffered by Hsp90 are candidates for human diseases of signaling such as cancer. Like cancer, morphological abnormalities buffered by Hsp90 are discrete threshold traits with a continuous underlying basis of liability determining their probability of occurrence. QTL and deletion maps for one of the most frequent Hsp90-dependent abnormalities in Drosophila, deformed eye (dfe), were replicated across three genetically related artificial selection lines using strategies dependent on proximity to the dfe threshold and the direction of genetic and environmental effects. Up to 17 dfe loci (QTL) linked by 7 interactions were detected based on the ability of small recombinant regions of an unaffected and completely homozygous control genotype to dominantly suppress or enhance dfe penetrance at its threshold in groups of isogenic recombinant flies, and over 20 deletions increased dfe penetrance from a low expected value in one or more line, identifying a complex network of genes responsible for the dfe phenotype. Replicated comparisons of these whole-genome mapping approaches identified several QTL regions narrowly defined by deletions and 4 candidate genes, with additional uncorrelated QTL and deletions highlighting differences between the approaches and the need for caution in attributing the effect of deletions directly to QTL genes.

RNAseq in the mosquito maxillary palp: a little antennal RNA goes a long way

RNAseq in the mosquito maxillary palp: a little antennal RNA goes a long way

David C. Rinker , Xiaofan Zhou , Ronald Jason Pitts , Antonis Rokas , LJ Zwiebel
doi: http://dx.doi.org/10.1101/016998

A comparative transcriptomic study of mosquito olfactory tissues recently published in BMC Genomics (Hodges et al., 2014) reported several novel findings that have broad implications for the field of insect olfaction. In this brief commentary, we outline why the conclusions of Hodges et al. are problematic under the current models of insect olfaction and then contrast their findings with those of other RNAseq based studies of mosquito olfactory tissues. We also generated a new RNAseq data set from the maxillary palp of Anopheles gambiae in an effort to replicate the novel results of Hodges et al. but were unable to reproduce their results. Instead, our new RNAseq data support the more straightforward explanation that the novel findings of Hodges et al. were a consequence of contamination by antennal RNA. In summary, we find strong evidence to suggest that the conclusions of Hodges et al were spurious, and that at least some of their RNAseq data sets were irrevocably compromised by cross-contamination between samples.

Selective strolls: fixation and extinction in diploids are slower for weakly selected mutations than for neutral ones

Selective strolls: fixation and extinction in diploids are slower for weakly selected mutations than for neutral ones

fabrizio mafessoni , Michael Lachmann
doi: http://dx.doi.org/10.1101/016881

In finite populations, an allele disappears or reaches fixation due to two main forces, selection and drift. Selec- tion is generally thought to accelerate the process: a selected mutation will reach fixation faster than a neutral one, and a disadvantageous one will quickly disappear from the population. We show that even in simple diploid populations, this is often not true. Dominance and recessivity unexpectedly slow down the evolutionary process for weakly selected alleles. In particular, slightly advantageous dominant and mildly deleterious recessive mu- tations reach fixation more slowly than neutral ones. This phenomenon determines genetic signatures opposite to those expected under strong selection, such as increased instead of decreased genetic diversity around the selected site. Furthermore, we characterize a new phenomenon: mildly deleterious recessive alleles, thought to represent the vast majority of newly arising mutations, survive in a population longer than neutral ones, before getting lost. Hence, natural selection is less effective than previously thought in getting rid rapidly of slightly negative mutations, contributing their observed persistence in present populations. Consequently, low frequency slightly deleterious mutations are on average older than neutral ones.

Variation in rural African gut microbiomes is strongly shaped by parasitism and diet

Variation in rural African gut microbiomes is strongly shaped by parasitism and diet

Elise R Morton , Joshua Lynch , Alain Froment , Sophie Lafosse , Evelyne Heyer , Molly Przeworski , Ran Blekhman , Laure Segurel
doi: http://dx.doi.org/10.1101/016949

The human gut microbiome is influenced by its host’s nutrition and health status, and represents an interesting adaptive phenotype under the influence of metabolic and immune constraints. Previous studies contrasting rural populations in developing countries to urban industrialized ones have shown that geography is an important factor associated with the gut microbiome; however, studies have yet to disentangle the effects of factors such as climate, diet, host genetics, hygiene and parasitism. Here, we focus on fine-scale comparisons of African rural populations in order to (i) contrast the gut microbiomes of populations that inhabit similar environments but have different traditional subsistence modes and (ii) evaluate the effect of parasitism on microbiome composition and structure. We sampled rural Pygmy hunter-gatherers as well as Bantu individuals from both farming and fishing populations in Southwest Cameroon and found that the presence of Entamoeba is strongly correlated with microbial composition and diversity. Using a random forest classifier model, we show that an individual’s infection status can be predicted with 79% accuracy based on his/her gut microbiome composition. We identified multiple taxa that differ significantly in frequency between infected and uninfected individuals, and found that alpha diversity is significantly higher in infected individuals, while beta-diversity is reduced. Subsistence mode was another factor significantly associated with microbial composition, notably with some taxa previously shown to differ between Hadza East African hunter-gatherers and Italians also discriminating Pygmy hunter-gatherers from neighboring farming or fishing populations in Cameroon. In conclusion, these results provide evidence for a strong relationship between human gut parasites and the microbiome, and highlight how sensitive this microbial ecosystem is to subtle changes in host nutrition.

The origins of a novel butterfly wing patterning gene from within a family of conserved cell cycle regulators

The origins of a novel butterfly wing patterning gene from within a family of conserved cell cycle regulators

Nicola Nadeau , Carolina Pardo-Diaz , Annabel Whibley , Megan Ann Supple , Richard Wallbank , Grace C. Wu , Luana Maroja , Laura Ferguson , Heather Hines , Camilo Salazar , Richard ffrench-Constant , Mathieu Joron , William Owen McMillan , Chris Jiggins
doi: http://dx.doi.org/10.1101/016006

A major challenge in evolutionary biology is to understand the origins of novel structures. The wing patterns of butterflies and moths are derived phenotypes unique to the Lepidoptera. Here we identify a gene that we name poikilomousa (poik), which regulates colour pattern switches in the mimetic Heliconius butterflies. Strong associations between phenotypic variation and DNA sequence variation are seen in three different Heliconius species, in addition to associations between gene expression and colour pattern. Colour pattern variants are also associated with differences in splicing of poik transcripts. poik is a member of the conserved fizzy family of cell cycle regulators. It belongs to a faster evolving subfamily, the closest functionally characterised orthologue being the cortex gene in Drosophila, a female germ-line specific protein involved in meiosis. poik appears to have adopted a novel function in the Lepidoptera and become a major target for natural selection acting on colour and pattern variation in this group.

Recombining without hotspots: A comprehensive evolutionary portrait of recombination in two closely related species of Drosophila

Recombining without hotspots: A comprehensive evolutionary portrait of recombination in two closely related species of Drosophila

Caiti Smukowski Heil , Chris Ellison , Matthew Dubin , Mohamed Noor
doi: http://dx.doi.org/10.1101/016972

Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in Metazoans by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present what may be the most comprehensive portrait of recombination to date, combining contemporary recombination estimates from each of two sister species along with historic estimates of recombination using linkage-disequilibrium-based approaches derived from sequence data from both species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we replicate the pattern seen in human-chimpanzee that recombination rate is conserved at broad scales and more divergent at finer scales. We also find evidence of a species-wide recombination modifier, resulting in both a present and historic genome wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inter-species inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms.

The fate of a mutation in a fluctuating environment

The fate of a mutation in a fluctuating environment

Ivana Cvijovic , Benjamin H. Good , Elizabeth R. Jerison , Michael M. Desai
doi: http://dx.doi.org/10.1101/016709

Natural environments are never truly constant, but the evolutionary implications of temporally varying selection pressures remain poorly understood. Here we investigate how the fate of a new mutation in a variable environment depends on the dynamics of environmental fluctuations and on the selective pressures in each condition. We find that even when a mutation experiences many environmental epochs before fixing or going extinct, its fate is not necessarily determined by its time-averaged selective effect. Instead, environmental variability reduces the efficiency of selection across a broad parameter regime, rendering selection unable to distinguish between mutations that are substantially beneficial and substantially deleterious on average. Temporal fluctuations can also dramatically increase fixation probabilities, often making the details of these fluctuations more important than the average selection pressures acting on each new mutation. For example, mutations that result in a tradeoff between conditions but are strongly deleterious on average can nevertheless be more likely to fix than mutations that are always neutral or beneficial. These effects can have important implications for patterns of molecular evolution in variable environments, and they suggest that it may often be difficult for populations to maintain specialist traits, even when their loss leads to a decline in time-averaged fitness.

Dimensionality and the statistical power of multivariate genome-wide association studies

Dimensionality and the statistical power of multivariate genome-wide association studies

Eladio J. Marquez , David Houle
doi: http://dx.doi.org/10.1101/016592

Mutations virtually always have pleiotropic effects, yet most genome-wide association studies (GWAS) analyze effects one trait at a time. In order to investigate the performance of a multivariate approach to GWAS, we simulated scenarios where variation in a d-dimensional phenotype space was caused by a known subset of SNPs. Multivariate analyses of variance were then carried out on k traits, where k could be less than, greater than or equal to d. Our results show that power is maximized and false discovery rate (FDR) minimized when the number of traits analyzed, k, matches the true dimensionality of the phenotype being analyzed, d. When true dimensionality is high, the power of a single univariate analysis can be an order of magnitude less than the k=d case, even when the single trait with the largest genetic variance is chosen for analysis. When traits are added to a study in order of their independent genetic variation, the gains in power from increasing k up to d are much larger than the loss in power when k exceeds d. Simulations that explicitly model linkage disequilibrium (LD) indicate that when SNPs in disequilibrium are subjected to multivariate analysis, the magnitude of the apparent effect induced onto null SNPs by SNPs carrying a true effect weakens as k approaches d, such that the rank of P-values among a set of correlated SNPs becomes an increasingly reliable predictor of true positives. Multivariate GWAS outperform univariate ones under a wide range of conditions, and should become the standard in studies of the inheritance of complex phenotypes.

Analysis of whole mitogenomes from ancient samples

Analysis of whole mitogenomes from ancient samples

Gloria G. Fortes, Johanna L.A. Paijmans
(Submitted on 17 Mar 2015)

Ancient mitochondrial DNA has been used in a wide variety of palaeontological and archaeological studies, ranging from population dynamics of extinct species to patterns of domestication. Most of these studies have traditionally been based on the analysis of short fragments from the mitochondrial control region, analysed using PCR coupled with Sanger sequencing. With the introduction of high-throughput sequencing, as well as new enrichment technologies, the recovery of full mitochondrial genomes (mitogenomes) from ancient specimens has become significantly less complicated. Here we present a protocol to build ancient extracts into Illumina high-throughput sequencing libraries, and subsequent Agilent array-based capture to enrich for the desired mitogenome. Both are based on previously published protocols, with the introduction of several improvements aimed to increase the recovery of short DNA fragments, while keeping the cost and effort requirements low. This protocol was designed for enrichment of mitochondrial DNA in ancient or degraded samples. However, the protocols can be easily adapted for using for building libraries for shotgun-sequencing of whole genomes, or enrichment of other genomic regions.

Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions

Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions

Alicia Schep , Jason D Buenrostro , Sarah K Denny , Katja Schwartz , Gavin Sherlock , William J Greenleaf
doi: http://dx.doi.org/10.1101/016642

Transcription factors canonically bind nucleosome-free DNA, making the positioning of nucleosomes within regulatory regions crucial to the regulation of gene expression. We observe a highly structured pattern of DNA fragment lengths and positions generated by the assay of transposase accessible chromatin (ATAC-seq) around nucleosomes in S. cerevisiae, and use this distinctive two-dimensional nucleosomal “fingerprint” as the basis for a new nucleosome-positioning algorithm called NucleoATAC. We show that NucleoATAC can identify the rotational and translational positions of nucleosomes with up to base pair resolution and provide quantitative measures of nucleosome occupancy in S. cerevisiae, S. pombe, and human cells. We demonstrate application of NucleoATAC to a number of outstanding problems in chromatin biology, including analysis of sequence features underlying nucleosome positioning, promoter chromatin architecture across species, identification of transient changes in nucleosome occupancy and positioning during a dynamic cellular response, and integrated analysis of nucleosome occupancy and transcription factor binding.